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PREREQUISITES



BASIC LINEAR ALGEBRA

Lemma 1.1: If 𝐴 is a symmetric 𝑛 × 𝑛 matrix, then all of its eigenvalues are real.

Lemma 1.2: Let 𝜆 and 𝜆 be two eigenvalues of a symmetric matrix 𝐴. Let the corresponding 
eigenvectors be 𝐮, 𝐮. Then 𝜆 ≠ 𝜆 ⇒ 𝑢, 𝑢 = 0

Lemma 1.3: Let 𝜆ଵ ≤ ⋯ ≤ 𝜆 be the spectrum of 𝐴 with the 𝐮ଵ, …𝐮 being the 
corresponding eigenvectors. Then 𝐴 = ∑ 𝜆𝐮𝐮

்
ୀଵ . Here 𝐮ଵ,…𝐮 are orthonormal.

Theorem 1.4: If 𝐴 is a 𝑛 × 𝑛 real symmetric matrix, then for all 1 ≤ 𝑘 ≤ 𝑛, 

𝜆 = min
𝐯∈ோ∖  ,𝐯𝐮ୀ,∀∈ ଵ,…,ିଵ

𝐯்𝐴𝐯

𝐯்𝐯

And

𝜆 = max
𝐯∈ோ∖  ,𝐯𝐮ୀ,∀∈ ାଵ,…,

𝐯்𝐴𝐯

𝐯்𝐯



THE GRAPH LAPLACIAN

We define the adjacency matrix and the degree matrix of a graph 
as follows:

,

,


The Graph Laplacian of is then defined as .

We define the matrices  , where as follows: 



PROPERTIES OF THE LAPLACIAN

Lemma 2.1: If is the graph Laplacian of , ∈ா .

Lemma 2.2: Let be a graph Laplacian. Then is positive semidefinite.

Lemma 2.3: Let be a graph Laplacian. Then is an eigenvector of 
with eigenvalue .

Theorem 2.4: Let be the graph Laplacian of . Then, ଶ iff is 
connected.

Theorem 2.5: Let × be any arbitrary incidence matrix of . Then 
் .



PROOF OF THEOREM 2.5

We have ்
, , , . 

When , the only nonzero terms are for those edges which are incident to , and 
the product is . Hence, the sum is the degree of the vertex.

For other entries, the term is only nonzero when is shared by and . We can see in 
that case, , , . Therefore, ்

, . 



WHAT ARE WE TRYING TO PROVE?

Theorem 3: There exists an algorithm which takes as input a graph Laplacian , a 
vector , and an error value and returns such that:

ା


ା


Where 
் . This algorithm runs in 

ଵ

ఌ
time, where is the 

number of non-zero entries in . Here ା is the Moore-Penrose pseudoinverse. 



GRAPHS AS ELECTRICAL NETWORKS



DEFINING THE CIRCUIT

We can associate every edge to be a resistor with a resistance of .

Consider a voltage vector , which represents the voltage at each vertex, a 
current vector , which represents the current through each edge, and 

representing the external current supplied to each vertex. Note that , as no 
charge can accumulate in the network.

From Kirchoff’s current law, we have:
்

From Ohm’s Law, we have:

This gives us:
் ା



GRAPHS AS ELECTRICAL NETWORKS

Therefore, the current through an edge is  
ା , as the resistance is .

We use this to define the effective resistance of :

  
் ା

 

We can now consider the currents through any edge, when a unit current is passed 
through another edge. This would be given by (in matrix notation)

ା ்



PROPERTIES OF 

Lemma 4.1: is symmetric.
 This is because 𝐿ା is symmetric.

Lemma 4.2: ଶ

 Proof: Πଶ = 𝐵𝐿ା 𝐵்𝐵ฑ
ୀ

𝐿ା𝐵் = 𝐵 𝐿ା𝐿𝐿ା
ୀశ

𝐵் = 𝐵𝐿ା𝐵் = Π

Lemma 4.3: The eigenvalues of are either or .
 Proof: Let 𝑣 be an eigenvector. We have 𝜆𝐯 = Π𝐯 = Πଶ𝐯 = 𝜆ଶ𝐯, which implies 𝜆 = 0,1.

Lemma 4.4: If is connected, 
 Proof: 𝐵 is full column rank and the rank of 𝐿ା is 𝑛 − 1 if 𝐺 is connected. Therefore, the rank of Π is 
𝑛 − 1.



A FINAL NOTE ON EFFECTIVE RESISTANCES

Theorem 4.5[1]: Let be a spanning tree chosen uniformly at random from all the 
spanning trees in . Then the probability that an edge belongs to the tree is:



[1]: C. D. GODSIL AND G. ROYLE, ALGEBRAIC GRAPH THEORY. SPRINGER, 2001.



WEIGHTED GRAPHS

Let × such that , where is the weight vector.

We define:
்

ଵ
ଶ ା ்

ଵ
ଶ

If we consider the resistance of an edge to be the inverse of its weight, then all the 
results proved before apply, with , as according to Ohm’s law. The definition 
of  remains the same, but it used the new definition of the Laplacian.



GRAPH SPARSIFICATION Sparsification via Effective 
Resistances



INTRODUCTION

As already introduced, graphs are connected to electrical networks.

This connection can be used to spectrally sparsify graphs.

The goal of cut sparsification is, for a given graph and parameter , to 
find a weighted graph ᇱ such that for any cut of , the weight of 
the edges in that cross the cut is within a multiplicative factor of the number 
of edges in that cross this cut, while keeping the number of edges in small.

This must also be done quickly for various applications.



SPECTRAL SPARSIFICATION

Spectral sparsification is a stronger notion than cut sparsification, and plays an 
important role in the construction of Laplacian solvers.

Definition 5.1: Given an undirected graph and a parameter , a 
weighted graph ᇱ is said to be an -spectral sparsifier of if


ு


ீ



Where ீ and ு are the graph Laplacians for and .



SPECTRAL SPARSIFICATION (CONTD.)
The goal is then to minimize the number of edges in , while constructing it as quickly as 
possible. In particular, we want to construct a spectral sparsifier with edges in 

time.

Note that an -spectral sparsifier is also a -cut sparsifier as for any cut, we can plug in ௌ, 
the indicator for the cut, into the equation.

We shall soon prove the following theorem:

Theorem 5.1: There exists a randomized algorithm that, given a graph and a 
parameter , constructs a spectral sparsifier of size ଶ (edges) with 
probability 



USING EFFECTIVE RESISTANCES

The algorithm we use is an edge sampling algorithm – we repeatedly sample (with 
replacement) edges from the graph according to a carefully chosen probability 
distribution, and then weight these sampled edges proportionally to the inverse of 
their probability of their being selected.

Formally, let  be the probability that edge is selected, and let be the random 
variable such that  . Let be the number of samples. Finally let 
ଵ ଶ ் be i.i.d. copies of . Then the weighted multiset of edges is:

ଵ
భ

ଶ
మ

்




PROPERTIES OF ITS LAPLACIAN

Let be some incidence matrix for and  be the column vector corresponding to 
edge in . Then ீ

 . Now define   . Then, by the definition, 
we have:

ு
 





்

ୀଵ

 


்

ୀଵ

Now note that:

 


∈ா

 


ீ

From this, it is obvious that ு ீ



CHOOSING THE PROBABILITY DISTRIBUTION

We have to now specify the probability distribution. To do this, we use the intuition 
from Theorem 4.5 where we found that effective resistances are related to the 
probability of an edge being present in a randomly chosen minimum spanning tree.

We let 
ோ

ିଵ
, where   . The normalization factor is present as 

 . 

While this intuition behind choosing this distribution is not very clear, the idea is to 
choose edges proportional to  as picking a few random minimum spanning trees 
for seems like a good strategy to help in building a spectral sparsifier for it.



PROOF OF THEOREM 5.1

Recall the matrix ீ
ା , which satisfies:

 Πଶ = Π

 If Π is the column of Π corresponding to edge 𝑒, then 𝑅 = Π
ଶ

 ∑ 𝑅 = 𝑛 − 1

 Π is unitarily equivalent to ∑ 𝐞𝐞
ିଵ

ୀଵ , where 𝐞 is the 𝑗௧ standard basis vector for ℝ. This is 
because Π is symmetric (thus normal), and has only two eigenvalues: 1 with multiplicity 𝑛 − 1 and 0
with multiplicity 𝑚− 𝑛 + 1, same as ∑ 𝐞𝐞

ିଵ
ୀଵ .

Next we shall state an important theorem (without proof).



MATRIX CHERNOFF BOUND
Theorem 5.2[1]: Let be a small constant. Let ௗ×ௗ be a random, symmetric PSD matrix 
such that ௗ, where ௗ is the -dimensional identity matrix. Let 

ெ
. Let be 

a non-negative integer and let ଵ ଶ ் be i.i.d. copies of . Then,



்

ୀଵ

ଶ

This theorem also holds under various other conditions, the one we are interested in being when 
is unitarily equivalent to  

ௗᇲ

ୀଵ for some ᇱ , in which case replaces in 
the bound.

[1] R. AHLSWEDE AND A. WINTER, "STRONG CONVERSE FOR IDENTIFICATION VIA QUANTUM CHANNELS," IN IEEE TRANSACTIONS ON INFORMATION THEORY, MARCH 2002



CONDITIONS FOR USING THEOREM 5.2

To use Theorem 5.2, we define    ,  
 and   

 for 
. Now note that:

 


 


∈ா

Thus is unitarily equivalent to  
ିଵ

ୀଵ . Also note that:


ଶ 

ଶ







From this we have , so we can apply Theorem 5.2



USING THEOREM 5.2

Define 
ଵ

் 
்
ୀଵ

We now use Theorem 5.2 to get:
ଶ

By setting ଶ we can ensure that this probability of failure is ିஐ ଵ . 
Since ீ

ା , we have that, for any edge :






ீ
ା




ீ
ା





PROOF OF THEOREM 5.1 (CONTD.)

Thus, we have:

 


்

ୀଵ

ீ
ା

 


ீ
ା 

்

ୀଵ

ீ
ା

ு ீ
ା 

and,

ீ
ା 

ீ
ା

ீ ீ
ା 

Thus,

𝐱ஷ𝟎




𝐱ஷ𝟎


ீ
ା

ு ீ ீ
ା 





PROOF OF THEOREM 5.1 (CONTD.)

Now note that as is connected, for any , if , then is parallel to . Thus is 
we consider only such that , then .

So we substitute in the equation to get:

𝐳ஷ𝟎, 𝐳,𝟏 ୀ𝟎

 
ீ
ା

ு ீ ீ
ା 

 

𝐳ஷ𝟎, 𝐳,𝟏 ୀ𝟎


ீ ீ

ା
ு ீ ீ

ା
ீ


ீ

𝐳ஷ𝟎, 𝐳,𝟏 ୀ𝟎


ு


ீ



PROOF OF THEOREM 5.1 (CONTD.)
Thus we have

𝐳ஷ𝟎, 𝐳,𝟏 ୀ𝟎


ு


ீ

ିஐ ଵ

This completes the proof of Theorem 5.1.

The theorem can be extended to include a running time bound of , however we 
shall not be proving that here.



CRUDE SPECTRAL SPARSIFICATION

Instead of requiring knowledge of  , we can work with the knowledge of  
for all . This is a crude spectral sparsifier, and can be easily shown to work with 

 random samples. Thus we have a new theorem:

Theorem 5.3: Consider a graph with edge weights ீ , , and 
numbers  ீ  for all . If  , then the spectral sparsifier in 
Theorem 5.1 upon taking samples from the probability 
distribution induced by the s produces a graph that satisfies

With a probability of at least .



CHOLESKY DECOMPOSITION Solving Laplacians for Trees



INTRODUCTION

Cholesky Decomposition is a way to solve where is symmetric and PD. 
However, the same method still works for the Laplacian of a connected graph, as 

i.e., we are working in the subspace orthogonal to . Here, ା .

Lemma 6.1: Schur’s Lemma: ଵ ଵ
்

ଵ ଵ
iff 

ଵ and ଵ
𝐮భ𝐮భ



ௗభ
.



PROOF OF SCHUR’S LEMMA

As , ଵ (consider ଵ
்

ଵ ଵ). Now, consider minimising the quadratic 
expression ଶ

ଵ
் ்

ଵ over , for any (fixed) . The minima is at 
𝐮భ
𝐲

ௗభ
. Thus, the minima is ்

ଵ
𝐮భ𝐮భ



ௗభ
. As this is true for all , ଵ

𝐮భ𝐮భ


ௗభ
must be PD.

The other direction is trivial.



CHOLESKY DECOMPOSITION

Theorem 6.2: Cholesky Decomposition: If and symmetric, then there exists a 
lower triangular matrix , such that ் .

Proof: 

The theorem is trivially true for a matrix. Now, say it was true for all 
matrices.

Since , it is sufficient to express ் . This is because the positive 
definiteness implies that  , which means we can write ଵ ଶ⁄ ଵ ଶ⁄ ்

. 
We can now write as

ଵ ଵ
்

ଵ ଵ

்

ଵ

ଵ
ିଵ

ଵ
்

ଵ
ଵ ଵ

்

ଵ

ଵ
்

ଵ

ିଵ



PROOF OF CHOLESKY DECOMPOSITION

Let the matrix in the middle in the middle be ଵ. Now let ଵ
𝐮భ𝐮భ



ௗభ
. Now, by 

Schur’s Lemma, . 

Using the induction hypothesis, we have ᇱ ᇱ ᇱ், and

ଵ

்

ᇱ
ଵ

் ்

ᇱ்
ᇱᇱ ᇱᇱ்

Thus, we have ଵ
ᇱᇱ ᇱᇱ்

ଵ
் . Now, as the product of lower triangular matrices is 

lower triangular, we are done.



USING CHOLESKY DECOMPOSITION

Given a decomposition, we can solve quickly. 

We can evaluate ᇱ ା and then  ା
. Due to the triangular nature of 

, the time taken to calculate the pseudoinverse is of the order of the number of non-
zero elements of .

If we first permute the rows by a permutation matrix and then find the 
decomposition, we might find a decomposition with fewer non-zero elements(known as 
the fill-in). However, finding the minimum fill-in is NP-hard.



FAST SOLVERS FOR TREES

We try to find a fast solver for ் , where is a tree.

We can associate every symmetric matrix with a weighted graph (potentially with 
self loops), where is the weight of the edge connecting .
 Note: This is not the Laplacian of the graph.

Theorem 6.3: Given a symmetric, PSD matrix and a vector such that the graph 
of corresponds to a tree, one can find in time a permutation matrix such 
that the Cholesky decomposition of ் has at most nonzero entries.



PROOF OF THEOREM 6.3

We can view the proof of 6.2 as one that modifies the graph. When we recursively 
process row , the resulting graph (corresponding to ଵ) has the following changes:

a. All edges 𝑖𝑗, 𝑖 ≠ 𝑗 are deleted. This corresponds to setting 𝐴ଵ 𝑖, 𝑗 = 0.

b. For every pair 𝑗𝑘 neighbouring to 𝑖, a (potentially new) edge is modified. This corresponds to 

setting 𝐴ଵ 𝑗, 𝑘 = 𝐵ଵ 𝑗, 𝑘 −
 ,  ,

𝐮భ𝐮భ


 ,
భ

.

Suppose the graph corresponds to the system is a tree, potentially with self loops. 
Then in each iteration, we can choose a leaf node, by choosing an appropriate 
permutation matrix.



PROOF OF THEOREM 6.3

Since there is a single node adjacent to , the graph associated with ଵ is a tree.

This implies, we can write ் where ଵ ଶ , where each  is lower 
triangular, and has at most one nonzero off-diagonal element.

This gives a Cholesky decomposition with at most nonzero entries, where in each 
iteration operations are done, which implies the process takes time.



AN IMPORTANT COROLLARY

Corollary 6.4: If ் is the Laplacian of a tree and is a vector such that
𝐛, 𝟏 , then the solution of ் can found in time.

Proof: We can see the graph associated with the Laplacian of a tree is a tree. Hence, by 6.3,
we can find the Cholesky Decomposition of the permuted Laplacian to get ΛΛ்𝑄்𝐱 = 𝑄்𝐛

in time.

This is possible despite not being full rank (as ்) is not full rank, as
𝐛, 𝟏 = 0, and thus is in the column space of ் .

Therefore, this solution can be calculated in the number of nonzero
entries of ், i.e., in itime



ITERATIVE LINEAR SOLVERS The Gradient Method



THE OPTIMIZATION VIEW

We shall formulate solving the equation as a convex optimization problem. 
For this, we assume that is symmetric and positive-definite.

Solving is equivalent to finding the minimum of –

 

Since is PD, ଶ , so is strictly convex and thus has a unique minimum ∗. 
As we already know, this ∗ must satisfy –

∗ ∗



GRADIENT DESCENT-BASED SOLVER

Since is convex, we can use the well known gradient descent algorithm to solve for 
∗. Typically in gradient descent, we start at  and iterative move from ௧ to ௧ାଵ

by moving opposite the direction of the gradient of , which can (here) be calculated 
with a single multiplication of a matrix and a vector, which takes time  (say).

Theorem 7.1: There is an algorithm GDSOLVE that, given an matrix , a 
vector and , finds a vector such that 

ା


ା


in time  , where the condition number of is defined as 

 ଵ . For a vector , 
 .



THE STEP SIZE

First we define ௧
∗

௧ and ௧ ௧ ௧ ௧ .

The step size ௧ is a parameter which determines how much to move towards ௧, and 
we have ௧ାଵ ௧ ௧ ௧.

We can choose ௧ greedily, to minimize ௧ାଵ . Define as:

௧ ௧ ௧ ௧
்

௧ ௧


௧ ௧

It is easy to see that attains its minimum at ௧
𝐫
𝐫

𝐫
𝐫



ALGORITHM 7.1: GDSOLVE

Input: Symmetric, PD matrix ×, vector  and .

Output: ்


1. 

2.
1. Set 𝐫௧ = 𝐛 − 𝐴𝐱௧

2. Set 𝜂௧ =
𝐫
𝐫

𝐫
𝐫

3. Set 𝐱௧ାଵ = 𝐱௧ + 𝜂௧𝐫௧

3.

4. ்



LEMMA 7.2: 

Note two things: ௧ାଵ ௧ ௧ ௧ and ௧ାଵ ௧ ௧ ௧ . This gives ௧


௧ାଵ

௧


௧
𝐫
𝐫

𝐫
𝐫

௧


௧ , so ௧ and ௧ାଵ are orthogonal.

Thus, ௧ାଵ 
ଶ

௧ାଵ


௧ାଵ ௧ ௧ ௧


௧ାଵ ௧


௧ାଵ since ௧ and ௧ାଵ are 
orthogonal. Thus, ௧ାଵ 

ଶ
௧


௧ାଵ ௧


௧ ௧ ௧

Now we factor out the ௧ 
ଶ to get

௧ 
ଶ

௧
௧


௧

௧


௧
௧ 

ଶ ௧


௧

௧


௧

௧
 ଶ

௧

௧


௧



PROOF OF LEMMA 7.2 AND THEOREM 7.1

Now recall the min-max characterization of eigenvalues (Theorem 1.5). Thus, the first 
factor (in the product inside the brackets) is at most  while the second factor 
is at least ଵ [since , ଵ/ଶ

௧ so we can shift one of the s around in the 
product]. Thus, ௧ାଵ 

ଶ
௧ 

ଶ

Simply take to get ்   , which completes the proof 
of Theorem 7.1



ITERATIVE LINEAR SOLVERS The Conjugate Gradient Method



THE KRYLOV SUBSPACE

Consider the same problem as before, i.e., 

𝐱

் ்

In the previous algorithm, we generated, which generated:

ଵ   

ଶ ଵ ଵ ଵ ଵ ଵ     ଵ  ଵ  

and so on, with  and   .

This implies ௧  ௧ , where ௧ is the subspace spanned by 

. This is known as the Krylov Subspace of order generated by 
and .



IDEA BEHIND CONJUGATE GRADIENT

In the previous algorithm, the point we move to might not be the minimizer of over 
the affine space  ௧. This is what we will do in this algorithm.

Theorem 8.1: There is an algorithm that, given an symmetric matrix , a 
vector , and , finds a vector such that 

ା


ା


in time 
ଵ

ఌ
.

We shall find this algorithm and prove the theorem in the following section.



MOTIVATION FOR PROOF

We could find the minimizer of 𝑓 over 𝐱 +𝒦௧ quickly, if we had a basis of 𝒦௧, 
𝐩, 𝐩ଵ, … , 𝐩௧ିଵ such that:

𝑓 𝐱 +𝛽𝐩

௧ିଵ

ୀ

− 𝑓 𝐱 = 𝑓 𝐱 + 𝛽𝐩 − 𝑓 𝐱

௧ିଵ

ୀ

We could find the minimiser over each 𝛽 separately.

If 𝑓 is linear, this is trivially true. Thus, we only consider the quadratic portion. For brevity, let 
𝐯 = 𝛽𝐩 . Then, evaluating the LHS:

1

2
𝐱 +𝒗



்

𝐴 𝐱 +𝐯


−
1

2
𝐱்𝐴𝐱 = 𝐱்𝐴𝐯



+
1

2
𝐯


்

𝐴 𝐯


The RHS evaluates to ∑ 𝐱்𝐴𝐯 +
ଵ

ଶ
𝐯
்𝐴𝐯 . The two are equal iff the cross terms 𝐯

்𝐴𝐯 = 0,
whenever 𝑖 ≠ 𝑗.



A-ORTHOGONAL VECTORS

Definition 8.1: Given a symmetric matrix , two vectors are -orthogonal iff 
் .

Thus, we can see that our choices for  ௧ିଵ must be -orthogonal.

With this orthogonal basis, we can calculate ௧ to be the vectors that minimise 

 ௧  . Then, ௧
𝐩
𝐫బ

𝐩
𝐫బ

.



COMPUTING THE -ORTHONORMAL BASIS

Gram-Schmidt orthogonalization would take matrix-vector computations to 
calculate ௧ାଵ.

We use the symmetry of to reduce this to computations.

We start with  . Suppose that   spans ାଵ, and  ାଶ, for 
some . This is true for .

Consider  . If  ାଵ,  ାଵ , and we would be done, as this 
would span the entire space. Now assume that  ାଵ. Now, we construct ାଵ
as follows:

ାଵ 

்




்

ஸ





COMPUTING THE -ORTHONORMAL BASIS

This implies that 

ାଶ  
ାଵ

  ାଵ

This completes the induction. 

Now, this implies that  can be written as a linear combination of  , for . 
Thus, for all ,


்

 
்

  
்

ஸାଵ



Thus, 
்

 . Thus, we can write ௧ାଵ as:

௧ାଵ ௧
௧
் ଶ

௧

௧
்

௧
௧

௧
் ଶ

௧ିଵ

௧ିଵ
்

௧ିଵ
௧ିଵ



THE COMPLETE CONJUGATE GRADIENT 
ALGORITHM
Algorithm 8.1: CGSolve

Input: Symmetric, PD matrix 𝐴 ∈ ℝ×, 𝐛 ∈ ℝ, and 𝑇

Output: 𝐱் ∈ ℝ


1. 𝐱 ← 𝟎, 𝐫 ← 𝐛, 𝐩 ← 𝐫

2. for 𝑡 = 0 → 𝑇 − 1 do:
1. 𝛼௧ ←

𝐩𝐫బ

𝐩𝐩
2. 𝐫௧ ← 𝐛 − 𝐴𝐱௧
3. 𝐱௧ାଵ ← 𝐱௧ + 𝛼௧𝐩௧

4. 𝐩௧ାଵ ← 𝐴𝐩௧ −
𝐩
మ𝐩

𝐩
𝐩

𝐩௧ −
𝐩
మ𝐩షభ

𝐩షభ
 𝐩షభ

𝐩௧ିଵ

3. end for

4. return 𝐱்



ANALYSIS OF THE ALGORITHM

We can see in steps, 
⋆, as ⋆

 .

What if we want an -approximate solution?

Since ௧  ௧ , ௧  



௧ିଵ
ୀ . This motivates the definition of 


௧ିଵ

ୀ . Thus, ௧  . 

Now, as  
⋆

 ௧ 
⋆

 . Therefore, 

௧
⋆


⋆


⋆

Where .

Now, there is a one-to-one correspondence between points in   and degree 
polynomials, which has a one-to-one correspondence to degree polynomials 

that evaluate to at . Let this set of polynomials be ௧ .



ANALYSIS OF THE ALGORITHM

Since ௧ minimises ௧
⋆


ଶ over ௧, we get:

௧
⋆

௧
⋆


ଶ

∈𝒬
௧

⋆ ்
௧

⋆

Lemma 8.2: Let be a symmetric matrix with eigenvalues ଵ . Then, for a 
polynomial and vector :

் ்

∈ 


ଶ



PROOF OF 8.2

We can write ், which is the eigendecomposition of . Now 
், giving us:

் ் ଶ ்

Now, we can write any vector   . Therefore, ் ்
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 . The lemma follows trivially.



USING LEMMA 8.2

Using Lemma 8.2, we have: 
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Lemma 8.3: Let , ଵ,  be the smallest and largest eigenvalues of , and ௧
be the set of polynomials of degree at most which take value at . Then:
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Thus, any polynomial ௧ can be used to give an upper bound.



CHEBYSHEV POLYNOMIALS

We recursively define the Chebyshev polynomials (of the first kind) as follows:
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Lemma 8.5: ௧ . Specifically, ௧ .
 Proof: This is true for the base case. Now, cos 𝑡 + 1 𝜃 − cos 𝑡 − 1 𝜃 = 2 cos 𝜃 cos 𝑡𝜃, and thus we 

are done.

Now, for , we define:
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PROOF OF 8.1

We can see that 𝑄,,௧ ∈ 𝒬௧, and for 𝑥 ∈ 𝑎, 𝑏 , the numerator is at most 1, by lemma 8.5. Now, taking 𝑎 =
𝜆ଵ, 𝑏 = 𝜆 we have, ∀𝑥 ∈ 𝜆ଵ, 𝜆
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One can show, using cosh that 
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This gives us:

𝑄ఒభ,ఒ,௧ 𝑥 ≤ 2
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Thus, by Lemma 8.3, for any 𝑡 > Ω 𝜅 𝐴 log 𝜀ିଵ , after 𝑡 steps of CGSolve, we get:

𝑓 𝐱௧ − 𝑓 𝐱⋆ ≤ 𝜀ଶ 𝑓 𝐱 − 𝑓 𝐱⋆ ⇒ 𝐱 − 𝐴ା𝐛  ≤ 𝜀 𝐴ା𝐛 



CHEBYSHEV ITERATION

In CGSolve, the output is not linear in the input, i.e., we want sequence of polynomials 
such that ௧ ௧ . 

As in the proof of 8.3, it is sufficient to define ௧s such that:
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We can set ௧ ఒభ,ఒ,௧ to get this bound. Further, we can see that if  ଵ is 
used in place of ଵ and ௨  is used in place of , we get a similar bound.



CHEBYSHEV ITERATION

We can calculate the polynomial 𝑄ఒభ,ఒ,௧ using recursion, using the definitions shown before.

The iteration proceeds as follows:
𝐱 = 𝟎, 𝐱ଵ = 𝐛

𝐱௧ = 𝛼ଶ𝐴𝐱௧ିଵ + 𝛼ଵ𝐱௧ିଶ + 𝛼𝐛

The values of 𝛼 depend on 𝜆 and 𝜆௨.

Theorem 8.6[1]: There is an algorithm, which takes a 𝑛 × 𝑛 symmetric PD matrix 𝐴, a vector 𝐛, 
numbers 0 < 𝜆 ≤ 𝜆ଵ and 𝜆௨ ≥ 𝜆, and an error parameter 𝜀 > 0 and returns 𝐱 such that:

a) 𝐱 − 𝐴ା𝐛  ≤ 𝜀 𝐴ା𝐛 

b) 𝐱 = 𝑍𝐛, where 𝑍 only depends on 𝐴 and 𝜀.
c) 𝑍 − 𝐴ା ≤ 𝜀

This algorithm runs in 𝑂 𝑡 𝜆௨ 𝜆⁄ log 𝜀ିଵ𝜆
ିଵ time.
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