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Computing a point in K

Given a separation oracle for a convex body K , and R ∈ R+ such that
B (y , 1) ⊆ K ⊆ B (0,R) (y is unknown), compute a point in K .

I Goal: minimize number of calls to the separation oracle.

I Any deterministic algorithm needs n log2 R separation oracle calls in the worst
case.

Algorithm:

1. Initialize P1 = [−R,R]n, z = 0.

2. for i = 1 to N (to be fixed later.)

2.1 Compute z ∈ Pi (to be specified later).
2.2 Call separation oracle on z . If z ∈ K , output z .
2.3 Let aT x ≤ b be the hyperplane returned by the separation oracle. Set

Pi+1 := Pi ∩
{
x ∈ Rn : aT x ≤ aT z

}
.

3. Output that K is empty.
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Centroid

I If at the end of the algorithm we have vol (PN) < vol (B (0, 1)), then K is empty.

I We would like to compute new z such that volume of Pi is guaranteed to shrink
by at least a constant factor. Then N = Θ(n logR) will suffice.

I Choosing z to be the centroid guarantees this (Grunbaum’s Theorem), but
computing centroid is #P-hard in general.

Sample m independent and uniform random points from Pi , denote them by
y1, . . . , ym. Set z = (

∑
i∈[m] yi )/m.

Theorem

E [vol (Pi+1)] ≤
(

1− 1

e
+

√
n

m

)
vol (Pi ) .

With m = Θ(n), N = Θ(n logR) will suffice.
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Conductance

For a set of vertices S ⊂ V ,

φ(S) :=

∑
i∈S ,j∈V \S πiPij

min {π(S), π(V \ S)}

and φ := minS:0<π(S)<1 φ(S).

Markov Chain (informal definition)

I (K ,A) where K is the state space and A is a set of subsets of K that is closed
under complements and countable unions.

I For each u ∈ K and A ∈ A, Pu(A) is the probability of being in A after taking one
step from u.

I Given a starting distribution Q0, w0 is sampled from Q0 and wi is sampled from
Pwi−1 .
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I A distribution Q on (K ,A) is called stationary if one step from it gives the same
distribution, i.e., for any A ∈ A,∫

K
Pu(A)dQ(u) = Q(A).

I The conductance of a subset A is defined as

φ(A) :=

∫
A Pu(K \ A)dQ(u)

min {Q(A),Q(K \ A)}
.

and the conductance of the Markov chain is φ := minA φ(A).

I A distribution Q is atom-free if there is no x ∈ K with Q(x) > 0.

I P is said to be M-warm with respect to Q if

M = sup
A∈A

P(A)

Q(A)
.
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Mixing Time

Let Qt be the distribution of the random walk at time t.

Theorem
Let M = supAQ0(A)/Q(A). Then

dTV (Qt ,Q) ≤
√
M

(
1− φ2

2

)t

.

Therefore, for

t = O

(
1

φ2
log

(
M

ε

))
we have dTV (Qt ,Q) ≤ ε.

To bound mixing time, sufficient to prove lower bound on φ.
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Bounding Conductance

Fix a set S ⊂ K and consider the Grid-walk or ball-walk where the walk is currently in
S .

In one step, walk has a “large” probability of going to K \ S if walk is currently
“close” to the boundary of S and K \ S .
For S1,S2 ⊆ K ,

d(S1,S2) := inf {‖u − v‖ : u ∈ S1, v ∈ S2} .

Theorem
Let S1,S2,S3 be a partition into measurable sets of a convex body K of diameter D.
Then,

vol (S3) ≥ 2d(S1,S2)

D
min {vol (S1) , vol (S2)} .

I Not true for non-convex bodies (e.g. dumbell graph).

I Dependance on D unavoidable (e.g. cylinder verify this).
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More general random walks

Let f : Rn → R+ be an integrable function. It defines a measure πf on measurable
subsets of Rn.

πf (A) =

∫
A f (x)dx∫
Rn f (x)dx

.

Ball walk with Metropolis filter (δ, f )

1. Pick a uniform random point in the ball of radius δ centered at the current point
x .

2. Move to y with probability min {1, f (y)/f (x)}, stay at x with remaining
probability.

I Ball walk has πf as stationary distribution.

I When does this have “large” conductance?
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Logconcave functions

A function f : Rn → R+ is said to be logconcave if for any x , y ∈ Rn and λ ∈ [0, 1],

f (λx + (1− λ)y) ≥ f (x)λf (y)1−λ.

Examples (verify)

1. For a convex body K , let f (x) =

{
1 if x ∈ K

0 otherwise
.

2. f (x) = e−‖x‖
2
.

3. Product of two logconcave functions.
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Centroid

Theorem
Let f : Rn → R+ be a logconcave density function, and let H be any halfspace
containing its centroid. Then ∫

H
f (x)dx ≥ 1

e
.

Theorem
Let f : Rn → R+ be a logconcave density function, z be the average of m independent
random points from πf , and let H be any halfspace containing z . Then

E [πf (H)] ≥ 1

e
−
√

n

m
.
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Conductance

Theorem
Let f be a logconcave density on Rn whose support has diameter D. Then for any
partition of Rn into measurable sets S1,S2, S3

πf (S3) ≥ 2d(S1,S2)

D
min {πf (S1), πf (S2)} .

Let zf be the centroid of f and let M(f ) := Ex∼πf ‖x − zf ‖.

Theorem
Let f be a logconcave density on Rn. Then for any partition of Rn into measurable
sets S1,S2,S3

πf (S3) ≥ ln 2

M(f )
d(S1,S2) min {πf (S1), πf (S2)} .
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Isotropic Densities

A density function f : Rn → R+ is isotropic if

EX∼πf [X ] = 0 and EX∼πf

[
XXT

]
= I .

For an isotropic density f ,

M(f ) = EX∼πf ‖X‖ ≤
√
EX∼πf ‖X‖

2 =
√
n.

Theorem
For an isotropic logconcave density f ,

P
[
‖X‖ ≥ t

√
n
]
≤ e−t .
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A density function f : Rn → R+ is C -isotropic if

EX∼πf [X ] = 0 and
1

C
I � EX∼πf

[
XXT

]
� CI .

I Let Σ = EX∼πf

[
(X − E [X ]) (X − E [X ])T

]
. Then Y := Σ−1/2 (X − E [X ]) is

isotropic.

E
[
YY T

]
= E

[
Σ−1/2 (X − E [X ])

(
Σ−1/2 (X − E [X ])

)T]
= Σ−1/2E

[
(X − E [X ]) (X − E [X ])T

]
Σ−1/2 = I .

I For any linear transformation A, vol (AK ) = det(A) · vol (K ).

I Σ can be estimated by sampling?
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