Sampling from a Convex Body
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Computing a point in K

Given a separation oracle for a convex body K, and R € R, such that
B(y,1) € K € B(0,R) (y is unknown), compute a point in K.
» Goal: minimize number of calls to the separation oracle.
> Any deterministic algorithm needs nlog, R separation oracle calls in the worst
case.
Algorithm:
1. Initialize P = [-R, R]", z=0.
2. for i =1 to N (to be fixed later.)

2.1 Compute z € P; (to be specified later).
2.2 Call separation oracle on z. If z € K, output z.
2.3 Let a’ x < b be the hyperplane returned by the separation oracle. Set
Py = PN {x eER":a"x < aTz}.
3. Output that K is empty.
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Centroid

» If at the end of the algorithm we have vol (Py) < vol (B(0,1)), then K is empty.

> We would like to compute new z such that volume of P; is guaranteed to shrink
by at least a constant factor. Then N = ©(nlog R) will suffice.

» Choosing z to be the centroid guarantees this (Grunbaum's Theorem), but
computing centroid is #P-hard in general.

Sample m independent and uniform random points from P;, denote them by
Yi,---5Ym- Set zZ= (Zie[m] yl)/m

Theorem
E [vol (Pis1)] < (1 _ é + \/Z> vol (Py).

With m = ©(n), N = ©(nlog R) will suffice.
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Conductance

For a set of vertices S C V,

ZieSJeV\S 7 Pjj

o) = o tr(S) (V8]

and ¢ := mins.gcr(s)<1 #(S).
Markov Chain (informal definition)

» (K,.A) where K is the state space and A is a set of subsets of K that is closed
under complements and countable unions.

» For each u € K and A € A, P,(A) is the probability of being in A after taking one
step from wu.

» Given a starting distribution Qg, wp is sampled from Qg and w; is sampled from
Pu._,.



» A distribution Q on (K, .A) is called stationary if one step from it gives the same
distribution, i.e., for any A € A,

/K Pu(A)dQ(u) = Q(A).



» A distribution Q on (K, .A) is called stationary if one step from it gives the same
distribution, i.e., for any A € A,

/K Pu(A)dQ(u) = Q(A).

» The conductance of a subset A is defined as

Ja Pu(K\ A)dQ(u)
min { Q(A), Q(K\ A)}

and the conductance of the Markov chain is ¢ := mina ¢(A).
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A distribution Q on (K, .A) is called stationary if one step from it gives the same
distribution, i.e., for any A € A,

/K Pu(A)dQ(u) = Q(A).

The conductance of a subset A is defined as

Ja Pu(K\ A)dQ(u)
min {Q( ); QK \ A)}
and the conductance of the Markov chain is ¢ := mina ¢(A).
A distribution Q is atom-free if there is no x € K with Q(x) > 0.

¢(A) =

P is said to be M-warm with respect to Q if

_ P(A)
M= 0P QA
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Let Q; be the distribution of the random walk at time t.
Theorem

Let M = supy Qo(A)/Q(A). Then

dw(ot,a)<m<1—‘f)t.



Mixing Time

Let Q; be the distribution of the random walk at time t.

Theorem
Let M = supy Qo(A)/Q(A). Then
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Mixing Time
Let Q; be the distribution of the random walk at time t.
Theorem

Let M = supy Qo(A)/Q(A). Then

dry (@, Q) < VM (1 - ‘f)

Therefore, for

t=0 <¢2 Iog(M>> we have drv (Q:, Q) < e.

To bound mixing time, sufficient to prove lower bound on ¢.
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Bounding Conductance

Fix a set S C K and consider the Grid-walk or ball-walk where the walk is currently in
S. In one step, walk has a “large” probability of going to K\ S if walk is currently
“close” to the boundary of S and K\ S.
For 51, 52 g K,

d(51,S) =inf{|lu—v|:uveS, veS}.

Theorem
Let S1, 52,53 be a partition into measurable sets of a convex body K of diameter D.
Then,

2d(51,52)

vol (53) > D

min {vol (51),vol (52)} .

» Not true for non-convex bodies (e.g. dumbell graph).

» Dependance on D unavoidable (e.g. cylinder verify this).
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More general random walks

Let f : R” — Ry be an integrable function. It defines a measure 7 on measurable
subsets of R".

Ja f(x)dx
A) =LA ———.
m(A) fR,, f(x)dx
Ball walk with Metropolis filter (6, f)

1. Pick a uniform random point in the ball of radius ¢ centered at the current point
X.

2. Move to y with probability min {1, f(y)/f(x)}, stay at x with remaining
probability.

» Ball walk has 7¢ as stationary distribution.
» When does this have “large” conductance?
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Logconcave functions

A function f : R" — R is said to be logconcave if for any x,y € R" and A € [0,1],
FAX + (1= A)y) > FOM ()

Examples (verify)
1 ifxeK

1. For a convex body K, let f(x) = o
0 otherwise

2. f(x) = eI’

3. Product of two logconcave functions.
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Theorem
Let f : R" — R, be a logconcave density function, and let H be any halfspace
containing its centroid. Then
/ f(x)dx >
H

1
e

Theorem

Let f : R" — R be a logconcave density function, z be the average of m independent
random points from ¢, and let H be any halfspace containing z. Then

n

Ere(H)] =

BB
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Conductance

Theorem
Let f be a logconcave density on R" whose support has diameter D. Then for any
partition of R" into measurable sets S1, S», S3

2d(51,52)

mF(S3) > 5

min {7¢(S1), m¢(S2)} .

Let z¢ be the centroid of f and let M(f) := Eyr, ||x — z¢]|.

Theorem
Let f be a logconcave density on R". Then for any partition of R" into measurable

sets 51,55, 53
In2 .
7 (S3) > #f)d(sl,Sz) min {m7(S1), 7¢(S»)} -
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Isotropic Densities

A density function f : R" — R is isotropic if
Exr, [X]=0 and  Ex.r, [XXT] = 1.
For an isotropic density f,

M(f) = Exer, [X]| < \/Exen, X[ = V0.

Theorem
For an isotropic logconcave density f,

BIX]| > tv/a] < e t.
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L

Ex~r [X] =0 and .

| < Exer, [XXT| 2 C1.

> Let ¥ = Exop, [(x “EX]) (X -E [X])T]. Then Y := £-12(X —E[X]) is
isotropic.
E [YYT} —E [2—1/2 (X —E[X]) (2—1/2 (X —E [X])) T]

— yl2g [(X “E[X])(X —E [X])T] T2 =,

» For any linear transformation A, vol (AK) = det(A) - vol (K).



A density function f : R" — R, is C-isotropic if

L

Ex~r [X] =0 and .

| < Exer, [XXT| 2 C1.
> Let ¥ = Exop, [(x “EX]) (X -E [X])T]. Then Y := £-Y2(X —E[X]) is
isotropic.
E [YYT} —E [2—1/2 (X —E[X]) (2—1/2 (X —E [X])) T]
— yl2g [(X “E[X])(X —E [X])T] T2 =,

» For any linear transformation A, vol (AK) = det(A) - vol (K).

> ¥ can be estimated by sampling?



