Sampling from a Convex Body

Based on

- 1. Ravi Kannan's notes.
- 2. Jonathan Kelner's lecture notes.
- 3. Lap Chi Lau's lecture notes.
- 4. "Techniques in Optimization and Sampling" by Yin Tat Lee and Santosh Vempala.
- 5. "Algorithmic Convex Geometry" by Santosh Vempala.
- 6. "Geometric Random Walks" by Santosh Vempala.

Recall that for a random variable X, $Y:=\Sigma^{-1/2}\left(X-\mathbb{E}\left[X\right]\right)$ is isotropic.

Recall that for a random variable X, $Y := \Sigma^{-1/2} (X - \mathbb{E}[X])$ is isotropic.

▶ Let x be a random point in $\mathcal{B}(0,1)$. Set $A_1 := I$ and $K_i = K \cap \mathcal{B}\left(0, \left(1 + \frac{1}{n}\right)^{i-1}\right)$.

Recall that for a random variable X, $Y := \Sigma^{-1/2} (X - \mathbb{E}[X])$ is isotropic.

- ▶ Let x be a random point in $\mathcal{B}(0,1)$. Set $A_1 := I$ and $K_i = K \cap \mathcal{B}\left(0, \left(1 + \frac{1}{n}\right)^{i-1}\right)$.
- For i = 1 to $n \log R$, do
 - 1. Use the ball walk from x to sample N random points x_1, \ldots, x_N from $A_i K_i$.
 - 2. Compute $C := \frac{1}{N} \sum_{i \in [N]} (x_i \frac{1}{N} \sum_i x_i) (x_i \frac{1}{N} \sum_i x_i)^T$ and set $A_{i+1} := C^{-1/2} A_i$.
 - 3. Set $x = x_N$.

Recall that for a random variable X, $Y := \Sigma^{-1/2} (X - \mathbb{E}[X])$ is isotropic.

- ▶ Let x be a random point in $\mathcal{B}(0,1)$. Set $A_1 := I$ and $K_i = K \cap \mathcal{B}\left(0, \left(1 + \frac{1}{n}\right)^{i-1}\right)$.
- For i = 1 to $n \log R$, do
 - 1. Use the ball walk from x to sample N random points x_1, \ldots, x_N from $A_i K_i$.
 - 2. Compute $C := \frac{1}{N} \sum_{i \in [N]} (x_i \frac{1}{N} \sum_i x_i) (x_i \frac{1}{N} \sum_i x_i)^T$ and set $A_{i+1} := C^{-1/2} A_i$.
 - 3. Set $x = x_N$.

Lemma

If K' is isotropic, then with N = poly(n), the matrix $C := (\sum_{i \in [N]} x_i x_i^T)/N$ satisfies $||C - I|| \le 0.5$ w.h.p.

▶ Thus we can ensure that $A_{i+1}K_i$ is 2-isotropic.

- ▶ Thus we can ensure that $A_{i+1}K_i$ is 2-isotropic.
- ▶ This implies that $A_{i+1}K_{i+1}$ is O(1)-isotropic (H.W.)

- ▶ Thus we can ensure that $A_{i+1}K_i$ is 2-isotropic.
- ▶ This implies that $A_{i+1}K_{i+1}$ is O(1)-isotropic (H.W.)
- ▶ Overall running time $O(\text{poly}(n) \log R)$.

- ▶ Thus we can ensure that $A_{i+1}K_i$ is 2-isotropic.
- ▶ This implies that $A_{i+1}K_{i+1}$ is O(1)-isotropic (H.W.)
- ▶ Overall running time O(poly(n) log R).

Theorem

For a convex body K in isotropic position, we have

$$\sqrt{rac{n+2}{n}}\;\mathcal{B}\left(0,1
ight)\subseteq\mathcal{K}\subseteq\sqrt{n(n+2)}\;\mathcal{B}\left(0,1
ight).$$

- ▶ Thus we can ensure that $A_{i+1}K_i$ is 2-isotropic.
- ▶ This implies that $A_{i+1}K_{i+1}$ is O(1)-isotropic (H.W.)
- ▶ Overall running time $O(\text{poly}(n) \log R)$.

Theorem

For a convex body K in isotropic position, we have

$$\sqrt{rac{n+2}{n}}\;\mathcal{B}\left(0,1
ight)\subseteq\mathcal{K}\subseteq\sqrt{n(n+2)}\;\mathcal{B}\left(0,1
ight).$$

Therefore, R/r = O(n).

Bounding conductance

local conductance of $u \in K$ is defined as $\ell(u) := 1 - P_u(u)$.

Bounding conductance

local conductance of $u \in K$ is defined as $\ell(u) := 1 - P_u(u)$.

Theorem

Let K be a convex body of diameter D such that $\mathcal{B}(0,1) \subseteq K$ and $\ell(u) \ge \ell \ \forall u \in K$. Then conductance of the ball walk with step size δ is

$$\phi = \Omega\left(\frac{\ell^2 \delta}{\sqrt{n}D}\right).$$

Bounding conductance

local conductance of $u \in K$ is defined as $\ell(u) := 1 - P_u(u)$.

Theorem

Let K be a convex body of diameter D such that $\mathcal{B}(0,1) \subseteq K$ and $\ell(u) \ge \ell \ \forall u \in K$. Then conductance of the ball walk with step size δ is

$$\phi = \Omega\left(\frac{\ell^2 \delta}{\sqrt{n}D}\right).$$

Let $K = S_1 \cup S_2$ be a partition into measurable sets. We will prove that

$$\int_{S_1} P_x(S_2) dx = \Omega\left(\frac{\ell^2 \delta}{\sqrt{n}D}\right) \min\left\{\operatorname{vol}\left(S_1\right), \operatorname{vol}\left(S_2\right)\right\}.$$

$$S_1':=\left\{x\in S_1: P_x(S_2)<rac{\ell}{4}
ight\} \qquad ext{and}\qquad S_2':=\left\{x\in S_2: P_x(S_1)<rac{\ell}{4}
ight\}.$$

$$S_1':=\left\{x\in S_1: P_x(S_2)<rac{\ell}{4}
ight\} \qquad ext{and}\qquad S_2':=\left\{x\in S_2: P_x(S_1)<rac{\ell}{4}
ight\}.$$

Let
$$S_3 := K \setminus (S_1' \cup S_2')$$
.

$$S_1':=\left\{x\in S_1: P_x(S_2)<rac{\ell}{4}
ight\} \qquad ext{and}\qquad S_2':=\left\{x\in S_2: P_x(S_1)<rac{\ell}{4}
ight\}.$$

Let $S_3 := K \setminus (S_1' \cup S_2')$. Suppose vol $(S_1') < \text{vol}(S_1)/2$, then

$$\int_{S_1} P_x(S_2) dx \geq \frac{\ell}{4} \text{vol}\left(S_1 \setminus S_1'\right) \geq \frac{\ell}{8} \text{vol}\left(S_1\right).$$

$$S_1':=\left\{x\in S_1: P_x(S_2)<\frac{\ell}{4}\right\} \qquad \text{and} \qquad S_2':=\left\{x\in S_2: P_x(S_1)<\frac{\ell}{4}\right\}.$$

Let $S_3 := K \setminus (S_1' \cup S_2')$. Suppose vol $(S_1) < \text{vol}(S_1)/2$, then

$$\int_{S_1} P_x(S_2) dx \geq \frac{\ell}{4} \text{vol}\left(S_1 \setminus S_1'\right) \geq \frac{\ell}{8} \text{vol}\left(S_1\right).$$

▶ Therefore, assume that vol $(S'_1) \ge \text{vol}(S_1)/2$ and vol $(S'_2) \ge \text{vol}(S_2)/2$.

$$S_1':=\left\{x\in S_1: P_x(S_2)<\frac{\ell}{4}\right\} \qquad \text{and} \qquad S_2':=\left\{x\in S_2: P_x(S_1)<\frac{\ell}{4}\right\}.$$

Let $S_3:=K\setminus (S_1'\cup S_2').$ Suppose $\mathsf{vol}\left(S_1'\right)<\mathsf{vol}\left(S_1\right)/2$, then

$$\int_{S_1} P_x(S_2) dx \geq \frac{\ell}{4} \text{vol}\left(S_1 \setminus S_1'\right) \geq \frac{\ell}{8} \text{vol}\left(S_1\right).$$

- ▶ Therefore, assume that vol $(S'_1) \ge \text{vol}(S_1)/2$ and vol $(S'_2) \ge \text{vol}(S_2)/2$.
- ▶ For any $u \in S'_1$ and $v \in S'_2$

$$d_{\mathsf{TV}}(P_u, P_v) \ge 1 - P_u(S_2) - P_v(S_1) > 1 - \frac{\ell}{2}.$$

Let $u', v' \in K$ such that $\ell(u'), \ell(v') \ge \ell$ and $||u' - v'|| \le t\delta/\sqrt{n}$. Then $d_{\mathsf{TV}}(P_{u'}, P_{v'}) \le 1 + t - \ell$.

Let $u', v' \in K$ such that $\ell(u'), \ell(v') \ge \ell$ and $||u' - v'|| \le t\delta/\sqrt{n}$. Then $d_{\mathsf{TV}}(P_{u'}, P_{v'}) \le 1 + t - \ell$.

Applying Lemma with $t = \ell/2$, $||u - v|| \ge \frac{\ell \delta}{2\sqrt{n}}$.

Let $u', v' \in K$ such that $\ell(u'), \ell(v') \ge \ell$ and $||u' - v'|| \le t\delta/\sqrt{n}$. Then $d_{\mathsf{TV}}(P_{u'}, P_{v'}) \le 1 + t - \ell$.

Applying Lemma with $t=\ell/2$, $\|u-v\|\geq \frac{\ell\delta}{2\sqrt{n}}$. Therefore, $d(S_1',S_2')\geq \frac{\ell\delta}{2\sqrt{n}}$.

Let $u', v' \in K$ such that $\ell(u'), \ell(v') \ge \ell$ and $\|u' - v'\| \le t\delta/\sqrt{n}$. Then $d_{\mathsf{TV}}(P_{u'}, P_{v'}) \le 1 + t - \ell$.

Applying Lemma with $t=\ell/2$, $\|u-v\|\geq \frac{\ell\delta}{2\sqrt{n}}$. Therefore, $d(S_1',S_2')\geq \frac{\ell\delta}{2\sqrt{n}}$.

$$\operatorname{vol}\left(S_{3}\right) \geq \frac{2d(S_{1}', S_{2}')}{D} \min\left\{\operatorname{vol}\left(S_{1}'\right), \operatorname{vol}\left(S_{2}'\right)\right\} \geq \frac{\ell\delta}{2\sqrt{n}D} \min\left\{\operatorname{vol}\left(S_{1}\right), \operatorname{vol}\left(S_{2}\right)\right\}.$$

Let $u', v' \in K$ such that $\ell(u'), \ell(v') \ge \ell$ and $||u' - v'|| \le t\delta/\sqrt{n}$. Then $d_{\mathsf{TV}}(P_{u'}, P_{v'}) \le 1 + t - \ell$.

Applying Lemma with $t=\ell/2$, $\|u-v\|\geq rac{\ell\delta}{2\sqrt{n}}$. Therefore, $d(S_1',S_2')\geq rac{\ell\delta}{2\sqrt{n}}$.

$$\mathsf{vol}\left(S_{3}\right) \geq \frac{2d(S_{1}',S_{2}')}{D} \min\left\{\mathsf{vol}\left(S_{1}'\right),\mathsf{vol}\left(S_{2}'\right)\right\} \geq \frac{\ell\delta}{2\sqrt{n}D} \min\left\{\mathsf{vol}\left(S_{1}\right),\mathsf{vol}\left(S_{2}\right)\right\}.$$

$$\begin{split} \int_{S_1} P_x(S_2) dx &= \frac{1}{2} \int_{S_1} P_x(S_2) dx + \int_{S_2} P_x(S_1) dx \\ &\geq \frac{1}{2} \left(\frac{\ell}{4} \text{vol}(S_3) \right) \geq \frac{\ell^2 \delta}{16 \sqrt{nD}} \min \left\{ \text{vol}(S_1), \text{vol}(S_2) \right\}. \end{split}$$

▶ Local conductance can be very small, e.g. point close to a vertex of a polyhedron.

- ▶ Local conductance can be very small, e.g. point close to a vertex of a polyhedron.
- "Smoothen" the convex body, i.e. work with $K' := K + \alpha \mathcal{B}(0,1)$.

- ▶ Local conductance can be very small, e.g. point close to a vertex of a polyhedron.
- "Smoothen" the convex body, i.e. work with $K' := K + \alpha \mathcal{B}(0,1)$.
- ▶ Other more efficient ideas known as well.

- ▶ Local conductance can be very small, e.g. point close to a vertex of a polyhedron.
- "Smoothen" the convex body, i.e. work with $K' := K + \alpha \mathcal{B}(0,1)$.
- Other more efficient ideas known as well.

For $A, B \subseteq \mathbb{R}^n$, their *Minkowski sum* A + B is defined as

$$A + B := \{x + y : x \in A, y \in B\}.$$

- ▶ Local conductance can be very small, e.g. point close to a vertex of a polyhedron.
- "Smoothen" the convex body, i.e. work with $K' := K + \alpha \mathcal{B}(0,1)$.
- Other more efficient ideas known as well.

For $A, B \subseteq \mathbb{R}^n$, their *Minkowski sum* A + B is defined as

$$A + B := \{x + y : x \in A, y \in B\}.$$

If $\mathcal{B}(0,1) \subseteq K$ then, $\operatorname{vol}(K + \alpha \mathcal{B}(0,1)) \leq (1 + \alpha)^n \operatorname{vol}(K)$ (verify).

▶ For each $u \in K'$, there exists a $v \in K$ such that $||u - v|| \le \alpha$. By construction, $\mathcal{B}(v, \alpha) \subseteq K'$.

- ► For each $u \in K'$, there exists a $v \in K$ such that $||u v|| \le \alpha$. By construction, $\mathcal{B}(v, \alpha) \subseteq K'$.
- ► Therefore,

$$\ell(u) \geq \frac{\operatorname{vol}(\mathcal{B}(u,\delta) \cap \mathcal{B}(v,\alpha))}{\operatorname{vol}(\mathcal{B}(u,\delta))}.$$

- ▶ For each $u \in K'$, there exists a $v \in K$ such that $||u v|| \le \alpha$. By construction, $\mathcal{B}(v, \alpha) \subseteq K'$.
- ► Therefore,

$$\ell(u) \geq \frac{\operatorname{vol}(\mathcal{B}(u,\delta) \cap \mathcal{B}(v,\alpha))}{\operatorname{vol}(\mathcal{B}(u,\delta))}.$$

▶ W.l.o.g. assume that v = 0 and $u = \alpha e_1$.

- ▶ For each $u \in K'$, there exists a $v \in K$ such that $||u v|| \le \alpha$. By construction, $\mathcal{B}(v, \alpha) \subseteq K'$.
- ► Therefore,

$$\ell(u) \geq \frac{\operatorname{vol}(\mathcal{B}(u,\delta) \cap \mathcal{B}(v,\alpha))}{\operatorname{vol}(\mathcal{B}(u,\delta))}.$$

▶ W.l.o.g. assume that v = 0 and $u = \alpha e_1$.

Claim: For $\alpha \geq \delta \sqrt{n}$, all points in $\mathcal{B}(\alpha e_1, \delta)$ with $x_1 \leq \alpha - \delta / \sqrt{n}$ belong to $\mathcal{B}(0, \alpha)$.

▶ Fix $x \in \mathcal{B}(\alpha e_1, \delta)$ such that $x_1 \leq \alpha - \delta/\sqrt{n}$.

- ▶ For each $u \in K'$, there exists a $v \in K$ such that $||u v|| \le \alpha$. By construction, $\mathcal{B}(v, \alpha) \subseteq K'$.
- Therefore,

$$\ell(u) \geq \frac{\operatorname{vol}(\mathcal{B}(u,\delta) \cap \mathcal{B}(v,\alpha))}{\operatorname{vol}(\mathcal{B}(u,\delta))}.$$

▶ W.I.o.g. assume that v = 0 and $u = \alpha e_1$.

Claim: For $\alpha \geq \delta \sqrt{n}$, all points in $\mathcal{B}(\alpha e_1, \delta)$ with $x_1 \leq \alpha - \delta / \sqrt{n}$ belong to $\mathcal{B}(0, \alpha)$.

- ▶ Fix $x \in \mathcal{B}(\alpha e_1, \delta)$ such that $x_1 \leq \alpha \delta/\sqrt{n}$.
- ► Since $(x_1 \alpha)^2 + \sum_{i=2}^n x_i^2 \le \delta^2$, we have $\sum_{i=2}^n x_i^2 \le \delta^2 \delta^2/n$.

- ► For each $u \in K'$, there exists a $v \in K$ such that $||u v|| \le \alpha$. By construction, $\mathcal{B}(v, \alpha) \subseteq K'$.
- ► Therefore,

$$\ell(u) \geq \frac{\operatorname{vol}(\mathcal{B}(u,\delta) \cap \mathcal{B}(v,\alpha))}{\operatorname{vol}(\mathcal{B}(u,\delta))}.$$

▶ W.l.o.g. assume that v = 0 and $u = \alpha e_1$.

Claim: For $\alpha \geq \delta \sqrt{n}$, all points in $\mathcal{B}(\alpha e_1, \delta)$ with $x_1 \leq \alpha - \delta / \sqrt{n}$ belong to $\mathcal{B}(0, \alpha)$.

- ▶ Fix $x \in \mathcal{B}(\alpha e_1, \delta)$ such that $x_1 \leq \alpha \delta/\sqrt{n}$.
- ► Since $(x_1 \alpha)^2 + \sum_{i=2}^n x_i^2 \le \delta^2$, we have $\sum_{i=2}^n x_i^2 \le \delta^2 \delta^2/n$.
- Therefore,

$$\sum_{i=1}^{n} x_i^2 \le \left(\alpha - \frac{\delta}{\sqrt{n}}\right)^2 + \sum_{i=2}^{n} x_i^2 \le \alpha^2 - \frac{2\alpha\delta}{\sqrt{n}} + \frac{\delta^2}{n} + \delta^2 - \frac{\delta^2}{n} \le \alpha^2.$$

Therefore,

$$\ell(u) \geq \frac{\operatorname{vol}\left(\mathcal{B}\left(u,\delta\right) \cap \mathcal{B}\left(v,\alpha\right)\right)}{\operatorname{vol}\left(\mathcal{B}\left(u,\delta\right)\right)} \geq \frac{\operatorname{vol}\left(\mathcal{B}\left(0,\delta\right) \cap \left\{x : x_{1} \leq -\delta/\sqrt{n}\right\}\right)}{\operatorname{vol}\left(\mathcal{B}\left(0,\delta\right)\right)}.$$

Therefore,

$$\ell(u) \geq \frac{\operatorname{vol}\left(\mathcal{B}\left(u,\delta\right) \cap \mathcal{B}\left(v,\alpha\right)\right)}{\operatorname{vol}\left(\mathcal{B}\left(u,\delta\right)\right)} \geq \frac{\operatorname{vol}\left(\mathcal{B}\left(0,\delta\right) \cap \left\{x : x_{1} \leq -\delta/\sqrt{n}\right\}\right)}{\operatorname{vol}\left(\mathcal{B}\left(0,\delta\right)\right)}.$$

Using standard estimates, $\ell(u) = \Omega(1)$.

Therefore,

$$\ell(u) \geq \frac{\operatorname{vol}\left(\mathcal{B}\left(u,\delta\right) \cap \mathcal{B}\left(v,\alpha\right)\right)}{\operatorname{vol}\left(\mathcal{B}\left(u,\delta\right)\right)} \geq \frac{\operatorname{vol}\left(\mathcal{B}\left(0,\delta\right) \cap \left\{x : x_{1} \leq -\delta/\sqrt{n}\right\}\right)}{\operatorname{vol}\left(\mathcal{B}\left(0,\delta\right)\right)}.$$

Using standard estimates, $\ell(u) = \Omega(1)$.

Membership oracle for K'.

- ▶ Given x, is there a $y \in K$ such that $||y x|| \le \alpha$.
- ▶ Can be solved using the ellipsoid algorithm and membership oracle for *K*.

Generating a warm start

Mixing time is $O\left(\frac{\log(M/\epsilon)}{\phi^2}\right)$, where $M:=\sup_A Q_0(A)/Q(A)$.

Generating a warm start

Mixing time is $O\left(\frac{\log(M/\epsilon)}{\phi^2}\right)$, where $M:=\sup_A Q_0(A)/Q(A)$.

- ▶ Let x be a random point in $\mathcal{B}(0,1)$. Set $K_i = K \cap \mathcal{B}\left(0,\left(1+\frac{1}{n}\right)^{i-1}\right)$.
- For i = 1 to $n \log R$, do
 - 1. Use the ball walk from x to sample a random point y from K_i .
 - 2. Set y = x.
- ▶ Output *x*.

Generating a warm start

Mixing time is $O\left(\frac{\log(M/\epsilon)}{\phi^2}\right)$, where $M:=\sup_A Q_0(A)/Q(A)$.

- ▶ Let x be a random point in $\mathcal{B}(0,1)$. Set $K_i = K \cap \mathcal{B}\left(0,\left(1+\frac{1}{n}\right)^{i-1}\right)$.
- For i = 1 to $n \log R$, do
 - 1. Use the ball walk from x to sample a random point y from K_i .
 - 2. Set y = x.
- ▶ Output *x*.

Since vol $(K_{i+1}) \le e$ vol (K_i) , a random point from K_i is a e-warm start for K_{i+1} .

vol $(K) = \int_{\mathbb{R}^n} \mathbf{1}_K(x) dx$. What other functions f can be integrated?

vol $(K) = \int_{\mathbb{R}^n} \mathbf{1}_K(x) dx$. What other functions f can be integrated?

$$\int_{\mathbb{R}^n} f = \frac{\int f_m}{\int f_{m-1}} \cdot \frac{\int f_{m-1}}{\int f_{m-2}} \cdots \frac{\int f_1}{\int f_0} \int f_0.$$

vol $(K) = \int_{\mathbb{R}^n} \mathbf{1}_K(x) dx$. What other functions f can be integrated?

$$\int_{\mathbb{R}^n} f = \frac{\int f_m}{\int f_{m-1}} \cdot \frac{\int f_{m-1}}{\int f_{m-2}} \cdots \frac{\int f_1}{\int f_0} \int f_0.$$

Note that

$$\mathbb{E}_{x \sim f_i} \left[\frac{f_{i+1}(x)}{f_i(x)} \right] = \int \frac{f_{i+1}(x)}{f_i(x)} \cdot \frac{f_i(x)}{\int f_i} dx = \frac{\int f_{i+1}}{\int f_i}.$$

vol $(K) = \int_{\mathbb{R}^n} \mathbf{1}_K(x) dx$. What other functions f can be integrated?

$$\int_{\mathbb{R}^n} f = \frac{\int f_m}{\int f_{m-1}} \cdot \frac{\int f_{m-1}}{\int f_{m-2}} \cdots \frac{\int f_1}{\int f_0} \int f_0.$$

Note that

$$\mathbb{E}_{x \sim f_i} \left[\frac{f_{i+1}(x)}{f_i(x)} \right] = \int \frac{f_{i+1}(x)}{f_i(x)} \cdot \frac{f_i(x)}{\int f_i} dx = \frac{\int f_{i+1}}{\int f_i}.$$

Choose $\{f_i\}$ such that samples from f_i provide a warm start for sampling from f_{i+1} , and f_0 is easy to sample from.

Surface area

The surface area of a body K is defined as

$$\operatorname{\mathsf{vol}}\left(\partial \mathcal{K}
ight) := \lim_{\epsilon o 0} rac{\operatorname{\mathsf{vol}}\left(\mathcal{K} + \epsilon \mathcal{B}\left(0, 1
ight)
ight) - \operatorname{\mathsf{vol}}\left(\mathcal{K}
ight)}{\epsilon}$$

Surface area

The surface area of a body K is defined as

$$\operatorname{\mathsf{vol}}\left(\partial K
ight) := \lim_{\epsilon o 0} rac{\operatorname{\mathsf{vol}}\left(K + \epsilon \mathcal{B}\left(0, 1
ight)
ight) - \operatorname{\mathsf{vol}}\left(K
ight)}{\epsilon}$$

Theorem

For a convex body K of diameter D and $S \subseteq K$, we have

$$\operatorname{vol}(K \cap \partial S) \geq \frac{2}{D} \min \left\{ \operatorname{vol}(S), \operatorname{vol}(K \setminus S) \right\}.$$

Brunn-Minkowski inequality

Recall that $A + B := \{x + y : x \in A, y \in B\}.$

Brunn-Minkowski inequality

Recall that $A + B := \{x + y : x \in A, y \in B\}.$

Theorem (Brunn-Minkowski inequality)

Let $A, B \subset \mathbb{R}^n$ be compact measurable sets. Then $\operatorname{vol}(A+B)^{1/n} \geq \operatorname{vol}(A)^{1/n} + \operatorname{vol}(B)^{1/n}$.

Brunn-Minkowski inequality

Recall that $A + B := \{x + y : x \in A, y \in B\}.$

Theorem (Brunn-Minkowski inequality)

Let $A, B \subset \mathbb{R}^n$ be compact measurable sets. Then $\operatorname{vol}(A+B)^{1/n} \geq \operatorname{vol}(A)^{1/n} + \operatorname{vol}(B)^{1/n}$.

$$\operatorname{vol}(\lambda A + (1 - \lambda)B) \ge \left(\operatorname{vol}(\lambda A)^{1/n} + \operatorname{vol}((1 - \lambda)B)^{1/n}\right)^{n}$$

$$= \left(\lambda \operatorname{vol}(A)^{1/n} + (1 - \lambda)\operatorname{vol}(B)^{1/n}\right)^{n}$$

$$\ge \left(\operatorname{vol}(A)^{\lambda/n}\operatorname{vol}(B)^{(1 - \lambda)/n}\right)^{n}$$

$$= \operatorname{vol}(A)^{\lambda}\operatorname{vol}(B)^{(1 - \lambda)}.$$

Proof for cuboids

Let A be a cuboid with side lengths (a_1, \ldots, a_n) and B be a cuboid with side lengths (b_1, \ldots, b_n) .

Proof for cuboids

Let A be a cuboid with side lengths (a_1, \ldots, a_n) and B be a cuboid with side lengths (b_1, \ldots, b_n) . Then A + B is a cuboid with side lengths $(a_1 + b_1, \ldots, a_n + b_n)$ (verify this).

$$\operatorname{vol}(A) = \prod_{i \in [n]} a_i, \quad \operatorname{vol}(B) = \prod_{i \in [n]} b_i, \quad \operatorname{vol}(A + B) = \prod_{i \in [n]} (a_i + b_i).$$

Proof for cuboids

Let A be a cuboid with side lengths (a_1, \ldots, a_n) and B be a cuboid with side lengths (b_1, \ldots, b_n) . Then A + B is a cuboid with side lengths $(a_1 + b_1, \ldots, a_n + b_n)$ (verify this).

$$\operatorname{vol}(A) = \prod_{i \in [n]} a_i, \quad \operatorname{vol}(B) = \prod_{i \in [n]} b_i, \quad \operatorname{vol}(A + B) = \prod_{i \in [n]} (a_i + b_i).$$

$$\frac{\operatorname{vol}(A)^{1/n} + \operatorname{vol}(B)^{1/n}}{\operatorname{vol}(A + B)^{1/n}} = \frac{\left(\prod_{i \in [n]}(a_i)\right)^{1/n} + \left(\prod_{i \in [n]}(b_i)\right)^{1/n}}{\left(\prod_{i \in [n]}(a_i + b_i)\right)^{1/n}} \\
= \left(\prod_{i \in [n]} \frac{a_i}{a_i + b_i}\right)^{1/n} + \left(\prod_{i \in [n]} \frac{b_i}{a_i + b_i}\right)^{1/n} \\
\leq \sum_{i \in [n]} \frac{a_i}{a_i + b_i} + \sum_{i \in [n]} \frac{b_i}{a_i + b_i} \quad (GM \leq AM) \\
= 1.$$

Proof by induction on number of cuboids in $A \cup B$.

Proof by induction on number of cuboids in $A \cup B$. Define

$$A^+ := A \cap \{x : x_1 \ge 0\}, \quad B^+ := B \cap \{x : x_1 \ge 0\}, \quad A^- := A \setminus A^+, \quad B^- := B \setminus B^+.$$

Proof by induction on number of cuboids in $A \cup B$. Define

$$A^+ := A \cap \{x : x_1 \ge 0\}, \quad B^+ := B \cap \{x : x_1 \ge 0\}, \quad A^- := A \setminus A^+, \quad B^- := B \setminus B^+.$$

▶ Translate A such that there exists a cuboid fully contained in A⁺ and a cuboid fully contained in A⁻.

Proof by induction on number of cuboids in $A \cup B$. Define

$$A^+ := A \cap \{x : x_1 \ge 0\}, \quad B^+ := B \cap \{x : x_1 \ge 0\}, \quad A^- := A \setminus A^+, \quad B^- := B \setminus B^+.$$

▶ Translate A such that there exists a cuboid fully contained in A⁺ and a cuboid fully contained in A⁻. Translate B such that

$$\frac{\operatorname{vol}(A^+)}{\operatorname{vol}(A)} = \frac{\operatorname{vol}(B^+)}{\operatorname{vol}(B)}.$$

Proof by induction on number of cuboids in $A \cup B$. Define

$$A^+ := A \cap \{x : x_1 \ge 0\}, \quad B^+ := B \cap \{x : x_1 \ge 0\}, \quad A^- := A \setminus A^+, \quad B^- := B \setminus B^+.$$

▶ Translate A such that there exists a cuboid fully contained in A⁺ and a cuboid fully contained in A⁻. Translate B such that

$$\frac{\operatorname{vol}(A^+)}{\operatorname{vol}(A)} = \frac{\operatorname{vol}(B^+)}{\operatorname{vol}(B)}.$$

▶ Note that $(A^+ + B^+) \cap (A^- + B^-) = \emptyset$ and

$$\frac{\operatorname{vol}(B)}{\operatorname{vol}(A)} = \frac{\operatorname{vol}(B^+)}{\operatorname{vol}(A^+)} = \frac{\operatorname{vol}(B^-)}{\operatorname{vol}(A^-)}.$$

$$vol (A + B) \ge vol (A^{+} + B^{+}) + vol (A^{-} + B^{-})
\ge \left(vol (A^{+})^{1/n} + vol (B^{+})^{1/n}\right)^{n} + \left(vol (A^{-})^{1/n} + vol (B^{-})^{1/n}\right)^{n}
= vol (A^{+}) \left(1 + \frac{vol (B)^{1/n}}{vol (A)^{1/n}}\right)^{n} + vol (A^{-}) \left(1 + \frac{vol (B)^{1/n}}{vol (A)^{1/n}}\right)^{n}
= vol (A) \left(1 + \frac{vol (B)^{1/n}}{vol (A)^{1/n}}\right)^{n} = \left(vol (A)^{1/n} + vol (B)^{1/n}\right)^{n}$$

$$vol (A + B) \ge vol (A^{+} + B^{+}) + vol (A^{-} + B^{-})
\ge \left(vol (A^{+})^{1/n} + vol (B^{+})^{1/n}\right)^{n} + \left(vol (A^{-})^{1/n} + vol (B^{-})^{1/n}\right)^{n}
= vol (A^{+}) \left(1 + \frac{vol (B)^{1/n}}{vol (A)^{1/n}}\right)^{n} + vol (A^{-}) \left(1 + \frac{vol (B)^{1/n}}{vol (A)^{1/n}}\right)^{n}
= vol (A) \left(1 + \frac{vol (B)^{1/n}}{vol (A)^{1/n}}\right)^{n} = \left(vol (A)^{1/n} + vol (B)^{1/n}\right)^{n}$$

Any measurable set can be approximated arbitrarily well using unions of cuboids. General case can be proved using this.