Sampling from a Convex Body

Based on
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“Algorithmic Convex Geometry” by Santosh Vempala.
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Isotropic Densities

Recall that for a random variable X, Y := ¥ ~1/2 (X — E[X]) is isotropic.
» Let x be a random point in B(0,1). Set A; :=/ and K; = KN B (O, (1+ %)Fl).

» For i =1 1to nlog R, do
1. Use the ball walk from x to sample N random points xg, ..

2. Compute C := % ZIG[N] (X,' - % ZI-X,') (X,- — % Zix,-)T and set A := C1/2A;.
3. Set x = xy.

-y XN from A,'K,'.

Lemma
If K’ is isotropic, then with N = poly(n), the matrix C := (Xiem xix:" )/ N satisfies

|C — 1| <0.5 w.h.p.
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> Thus we can ensure that Aj;1K; is 2-isotropic.
» This implies that A;;1Kjy1 is O(1)-isotropic (H.W.)
» Overall running time O(poly(n) log R).

Theorem
For a convex body K in isotropic position, we have

n+2
n

B(0,1) C K C+/n(n+2) B(0,1).

Therefore, R/r = O(n).
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Bounding conductance

local conductance of u € K is defined as ¢(u) :=1 — P,(u).

Theorem
Let K be a convex body of diameter D such that B(0,1) C K and ¢(u) > { Vu € K.
Then conductance of the ball walk with step size § is

-a(5)

Let K = 51 U S, be a partition into measurable sets. We will prove that

/51 Py (52)dx = Q <jzﬁi)> min {vol (51),vol (S2)} .
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Let S C S; be the set of points from which the random walk is unlikely to leave S;.
/ ¢ / 4
S1i=39x€51:P(S) < 1 and S, i=9x€5:P(S1) < 2l

Let S3:= K\ (5] US)). Suppose vol

—

S1) < vol (51) /2, then

vol (51\ §7) > gvol (51)-

LN

/ PL(S))dx >
S

» Therefore, assume that vol (S7) > vol (51) /2 and vol (55) > vol (S2) /2.
» Forany ue S and v € S}

drv (P P) > 1— Po(S5) — Po(S1) > 1— g
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Lemma (One-step overlap)

Let u',v' € K such that {(u'),¢(v') > € and || — V|| < t6/+/n. Then

drv (Py,Py) <1+t—¢.

Applying Lemma with t = ¢/2, ||u — v|| > 2\f Therefore, d(S7, S5) > 2{‘}

min {vol (51),vol (52)} .

vol (53) > 2401 5) iy {vol (51) ,vol ($3) } >

5
D 2/nD

/PX(Sz)dx:l/ PX(Sg)dx+/ P.(S1)dx
51 2 51 s2

> % (ivol (53)) > 16fD min {vol (S1),vol (S5)}
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Bounding local conductance

» Local conductance can be very small, e.g. point close to a vertex of a polyhedron.
» “Smoothen” the convex body, i.e. work with K’ := K + a3(0,1).

» Other more efficient ideas known as well.

For A, B C R", their Minkowski sum A + B is defined as
A+B:={x+y:xcAyeB}.

If B(0,1) C K then, vol (K + aB(0,1)) < (1 + «)" vol (K) (verify).
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» For each u € K’, there exists a v € K such that ||u — v|| < a. By construction,
B(v,a) C K.
» Therefore,
(u) > vol (B (u, ) N B (v, a)).
vol (B (u, 9))

> W.l.o.g. assume that v =0 and u = ae;.

Claim: For oo > d0+/n, all points in B («er, d) with x; < o — §/4/n belong to B(0, a).
» Fix x € B(aeq,d) such that x; < a—d/4/n.
» Since (x1 — a)? + Y7, x? < 62, we have Y7, x? < 62— §2%/n.

» Therefore,

n 2 n 2 2

) 2a0 & )
E 2 - - E 2 2Ty T 2_ 7 <ol
i:1x,_<oz ﬁ) + xi <o ﬁ+n+6 n_a

i=2



Therefore,

vol (B (u,0) N B (v,a)) - vol (B(0,0) N {x:x1 < —6/+/n})
W)z = 0Bwn = vol (B(0,))




Therefore,
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Therefore,

o) > Y B0 1B(v.0) ol (B(0,6)01 (x5 < ~5/v/n})
= wI(B(wo) - vol (B (0, 3)) '

Using standard estimates, ¢(u) = Q(1).

Membership oracle for K’.
» Given x, is there a y € K such that ||y — x|| < a.

» Can be solved using the ellipsoid algorithm and membership oracle for K.
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Generating a warm start

Mixing time is O ("’g(qﬁ%) where M := sup, Qo(A)/Q(A).

» Let x be a random point in B(0,1). Set K = KN B (0’ (1+ %)i—l).
» For i=1to nlog R, do

1. Use the ball walk from x to sample a random point y from K;.

2. Set y = X.

» Qutput x.

Since vol (Kj11) < e vol (Kj), a random point from K; is a e-warm start for Kj 1.
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Integration

vol (K) = [gn 1k(x)dx. What other functions f can be integrated?
ot T 087,
v St e [
Note that
:+1 :+1 fi(X)d - ffi+1
x~f X = .
ﬂﬂ Jfi Jfi



Integration

vol (K) = [gn 1k(x)dx. What other functions f can be integrated?
/f: ffm'ffm—l ffl/f-
n ffm—l ffm—2 ffO
E. . fira(x)] _ / firi(x) filx) . _ ffi+1'
LA fix) [ Jf
Choose {f;} such that samples from f; provide a warm start for sampling from f; 1,
and fy is easy to sample from.

Note that
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Surface area

The surface area of a body K is defined as

vol (9K) := lim vol (K + eB(0,1)) — vol (K)

e—0 €

Theorem
For a convex body K of diameter D and S C K, we have

vol (KN 9S) > %min {vol (S),vol (K'\ S)}.
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Brunn-Minkowski inequality

Recall that A+ B:={x+y:x€ A,y € B}.

Theorem (Brunn-Minkowski inequality)

Let A, B C R" be compact measurable sets. Then
vol (A + B)Y" > vol (A)Y" + vol (B)Y/".

(vol (A" + vl ((1 - )\)B)l/”)n
= (Aol (A" + (1= Aol (B)l/”)"

(vol (A" vol (B)=9/") "
= vol (A)* vol (B)A™) |

vol (M + (1 —X\)B) >
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this).

vol (A) = Mig[pai, vol (B) = Nigpmbi, vol (A+ B) = Mjcq(ai + bi).



Proof for cuboids

Let A be a cuboid with side lengths (a1,...,a,) and B be a cuboid with side lengths
(b1,...,bp). Then A+ B is a cuboid with side lengths (a1 + by, ..., a, + by) (verify
this).

vol (A) = Mig[pai, vol (B) = Nigpmbi, vol (A+ B) = Mjcq(ai + bi).

n n 1/n 1/n
vol (A)" +vol (B)" _ (Miegni(a1)) /" (Migp (b)Y
vol (A+ B)'/" (Miega(ai + b7)) "
1/n 1/n
aj bi
< : . (GM < AM)
,e[n] bi i€[n]

=1.
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Finite unions of cuboids
Proof by induction on number of cuboids in AU B. Define
AT = An{x:xy >0}, BT :=Bn{x:x >0}, A :=A\A", B :=B\B".
» Translate A such that there exists a cuboid fully contained in AT and a cuboid

fully contained in A~. Translate B such that

vol (AT) _ vol (B™)
vol (A) ~ vol(B) °

» Note that (AT + BT)N (A~ + B~) =0 and

vol (B)  vol(BT) ol (B™)

vol (A) ~ vol (AT) ~ vol (A)




vol (A+ B) > vol (A* + B*) +vol (A~ + B7)
> (vol ()" + vol (B)"7) "+ (vol (A7) /" + vol (B87) ")

B vol (B)Y/" ! _ vol (B)Y/" !
= vol (AT) (1 e (A)l/n> + vol (A7) (1 + 1/n>

/m\" n
= vol (A) (1 + %) = <vo| (A)l/n + vol (B)l/n>




vol (A+ B) > vol (A* + B*) +vol (A~ + B7)
> (vol ()" + vol (B)"7) "+ (vol (A7) /" + vol (B87) ")

— vol (A*) (1 + V°|(B)1/n> +vol (A7) (1 + VOI(B)W>

vol (A)Y/" vol (A)Y/
/n n n
= vol (A) (1 + %) = <vo| (A" 4+ vol (B)l/n>

Any measurable set can be approximated arbitrarily well using unions of cuboids.
General case can be proved using this.



