
Sampling from a Convex Body

Based on

1. Ravi Kannan’s notes.

2. Jonathan Kelner’s lecture notes.

3. “Techniques in Optimization and Sampling” by Yin Tat Lee and Santosh Vempala.

4. “Algorithmic Convex Geometry” by Santosh Vempala.

5. “Geometric Random Walks” by Santosh Vempala.



Sampling from a convex body K

Given a convex body K ⊂ Rn, output a uniform random point from K .

I Oracle access to K . Given x ∈ Rn, oracle answers in O(1) time whether x ∈ K .

I Also need some point in K as input. W.l.o.g., assume that 0 ∈ K .

I Also given r ,R > 0 such that B (0, r) ⊆ K ⊆ B (0,R). W.l.o.g. assume that
r = 1.

Has applications in volume estimation, optimization, etc.
Estimating volumes is a classical problem. Closed form formulae known for rectangular
solids, simplices, spheres, etc.



Sampling from a convex body K

Given a convex body K ⊂ Rn, output a uniform random point from K .

I Oracle access to K . Given x ∈ Rn, oracle answers in O(1) time whether x ∈ K .

I Also need some point in K as input. W.l.o.g., assume that 0 ∈ K .

I Also given r ,R > 0 such that B (0, r) ⊆ K ⊆ B (0,R). W.l.o.g. assume that
r = 1.

Has applications in volume estimation, optimization, etc.
Estimating volumes is a classical problem. Closed form formulae known for rectangular
solids, simplices, spheres, etc.



Sampling from a convex body K

Given a convex body K ⊂ Rn, output a uniform random point from K .

I Oracle access to K . Given x ∈ Rn, oracle answers in O(1) time whether x ∈ K .

I Also need some point in K as input. W.l.o.g., assume that 0 ∈ K .

I Also given r ,R > 0 such that B (0, r) ⊆ K ⊆ B (0,R). W.l.o.g. assume that
r = 1.

Has applications in volume estimation, optimization, etc.
Estimating volumes is a classical problem. Closed form formulae known for rectangular
solids, simplices, spheres, etc.



Sampling from a convex body K

Given a convex body K ⊂ Rn, output a uniform random point from K .

I Oracle access to K . Given x ∈ Rn, oracle answers in O(1) time whether x ∈ K .

I Also need some point in K as input. W.l.o.g., assume that 0 ∈ K .

I Also given r ,R > 0 such that B (0, r) ⊆ K ⊆ B (0,R). W.l.o.g. assume that
r = 1.

Has applications in volume estimation, optimization, etc.

Estimating volumes is a classical problem. Closed form formulae known for rectangular
solids, simplices, spheres, etc.



Sampling from a convex body K

Given a convex body K ⊂ Rn, output a uniform random point from K .

I Oracle access to K . Given x ∈ Rn, oracle answers in O(1) time whether x ∈ K .

I Also need some point in K as input. W.l.o.g., assume that 0 ∈ K .

I Also given r ,R > 0 such that B (0, r) ⊆ K ⊆ B (0,R). W.l.o.g. assume that
r = 1.

Has applications in volume estimation, optimization, etc.
Estimating volumes is a classical problem. Closed form formulae known for rectangular
solids, simplices, spheres, etc.



Computing volumes

Theorem (Informal statement)

There is no deterministic polynomial algorithm that, given a membership oracle for K,
computes vol (K ) to within a polynomial factor.

Proof idea.
Consider an oracle that answers “yes” to any point in the unit ball and “no” to any
point outside. After m “yes” answers, the convex body K could be anything between
the ball and the convex hull of the m query points. The ratio of these volumes in
exponential in n.



Computing volumes

Theorem (Informal statement)

There is no deterministic polynomial algorithm that, given a membership oracle for K,
computes vol (K ) to within a polynomial factor.

Proof idea.
Consider an oracle that answers “yes” to any point in the unit ball and “no” to any
point outside. After m “yes” answers, the convex body K could be anything between
the ball and the convex hull of the m query points. The ratio of these volumes in
exponential in n.



The power of randomness!

Theorem (Informal statement)

There exists a randomized algorithm that, given a membership oracle for K and a
parameter ε, runs in time polynomial in n, 1/ε and logR and outputs an estimate A
such that w.h.p. we have (1− ε)vol (K ) ≤ A ≤ (1 + ε)vol (K ).

I Main idea: algorithm for “approximately uniform” sampling from K .

I First proved by [Dyer, Frieze, Kannan - 89]. Many new developments since then
leading to a rich theory of geometric random walks!

First attempt. Suppose K ⊆ [−1/2, 1/2]n.

I Sample m uniform random points from [−1/2, 1/2]n and count how many belong
to K . Let m′ of them belong to K . Output m′/m.

E
[
m′

m

]
=

vol (K )

vol ([−1/2, 1/2]n)
= vol (K ) .



The power of randomness!

Theorem (Informal statement)

There exists a randomized algorithm that, given a membership oracle for K and a
parameter ε, runs in time polynomial in n, 1/ε and logR and outputs an estimate A
such that w.h.p. we have (1− ε)vol (K ) ≤ A ≤ (1 + ε)vol (K ).

I Main idea: algorithm for “approximately uniform” sampling from K .

I First proved by [Dyer, Frieze, Kannan - 89]. Many new developments since then
leading to a rich theory of geometric random walks!

First attempt. Suppose K ⊆ [−1/2, 1/2]n.

I Sample m uniform random points from [−1/2, 1/2]n and count how many belong
to K . Let m′ of them belong to K . Output m′/m.

E
[
m′

m

]
=

vol (K )

vol ([−1/2, 1/2]n)
= vol (K ) .



The power of randomness!

Theorem (Informal statement)

There exists a randomized algorithm that, given a membership oracle for K and a
parameter ε, runs in time polynomial in n, 1/ε and logR and outputs an estimate A
such that w.h.p. we have (1− ε)vol (K ) ≤ A ≤ (1 + ε)vol (K ).

I Main idea: algorithm for “approximately uniform” sampling from K .

I First proved by [Dyer, Frieze, Kannan - 89]. Many new developments since then
leading to a rich theory of geometric random walks!

First attempt. Suppose K ⊆ [−1/2, 1/2]n.

I Sample m uniform random points from [−1/2, 1/2]n and count how many belong
to K . Let m′ of them belong to K . Output m′/m.

E
[
m′

m

]
=

vol (K )

vol ([−1/2, 1/2]n)
= vol (K ) .



The power of randomness!

Theorem (Informal statement)

There exists a randomized algorithm that, given a membership oracle for K and a
parameter ε, runs in time polynomial in n, 1/ε and logR and outputs an estimate A
such that w.h.p. we have (1− ε)vol (K ) ≤ A ≤ (1 + ε)vol (K ).

I Main idea: algorithm for “approximately uniform” sampling from K .

I First proved by [Dyer, Frieze, Kannan - 89]. Many new developments since then
leading to a rich theory of geometric random walks!

First attempt. Suppose K ⊆ [−1/2, 1/2]n.

I Sample m uniform random points from [−1/2, 1/2]n and count how many belong
to K . Let m′ of them belong to K . Output m′/m.

E
[
m′

m

]
=

vol (K )

vol ([−1/2, 1/2]n)
= vol (K ) .



The power of randomness!

Theorem (Informal statement)

There exists a randomized algorithm that, given a membership oracle for K and a
parameter ε, runs in time polynomial in n, 1/ε and logR and outputs an estimate A
such that w.h.p. we have (1− ε)vol (K ) ≤ A ≤ (1 + ε)vol (K ).

I Main idea: algorithm for “approximately uniform” sampling from K .

I First proved by [Dyer, Frieze, Kannan - 89]. Many new developments since then
leading to a rich theory of geometric random walks!

First attempt. Suppose K ⊆ [−1/2, 1/2]n.

I Sample m uniform random points from [−1/2, 1/2]n and count how many belong
to K . Let m′ of them belong to K . Output m′/m.

E
[
m′

m

]
=

vol (K )

vol ([−1/2, 1/2]n)
= vol (K ) .



The power of randomness!

Theorem (Informal statement)

There exists a randomized algorithm that, given a membership oracle for K and a
parameter ε, runs in time polynomial in n, 1/ε and logR and outputs an estimate A
such that w.h.p. we have (1− ε)vol (K ) ≤ A ≤ (1 + ε)vol (K ).

I Main idea: algorithm for “approximately uniform” sampling from K .

I First proved by [Dyer, Frieze, Kannan - 89]. Many new developments since then
leading to a rich theory of geometric random walks!

First attempt. Suppose K ⊆ [−1/2, 1/2]n.

I Sample m uniform random points from [−1/2, 1/2]n and count how many belong
to K . Let m′ of them belong to K . Output m′/m.

E
[
m′

m

]
=

vol (K )

vol ([−1/2, 1/2]n)
= vol (K ) .



How large does m need to be?
Consider the example of K = B (0, 1/2). Then K ⊆ [−1/2, 1/2]n.

I n = 1
vol (K )

vol ([−1/2, 1/2]n)
= 1.

I n = 2
vol (K )

vol ([−1/2, 1/2]n)
=
π(1/2)2

1
=
π

4
.

I n = 3
vol (K )

vol ([−1/2, 1/2]n)
=

4π/3(1/2)3

1
=
π

6
.

I For general n
vol (K )

vol ([−1/2, 1/2]n)
≤ cn

for some constant c ∈ (0, 1).

Therefore, m will have to be exponential in n.



How large does m need to be?
Consider the example of K = B (0, 1/2). Then K ⊆ [−1/2, 1/2]n.

I n = 1
vol (K )

vol ([−1/2, 1/2]n)
= 1.

I n = 2
vol (K )

vol ([−1/2, 1/2]n)
=
π(1/2)2

1
=
π

4
.

I n = 3
vol (K )

vol ([−1/2, 1/2]n)
=

4π/3(1/2)3

1
=
π

6
.

I For general n
vol (K )

vol ([−1/2, 1/2]n)
≤ cn

for some constant c ∈ (0, 1).

Therefore, m will have to be exponential in n.



How large does m need to be?
Consider the example of K = B (0, 1/2). Then K ⊆ [−1/2, 1/2]n.

I n = 1
vol (K )

vol ([−1/2, 1/2]n)
= 1.

I n = 2
vol (K )

vol ([−1/2, 1/2]n)
=
π(1/2)2

1
=
π

4
.

I n = 3
vol (K )

vol ([−1/2, 1/2]n)
=

4π/3(1/2)3

1
=
π

6
.

I For general n
vol (K )

vol ([−1/2, 1/2]n)
≤ cn

for some constant c ∈ (0, 1).

Therefore, m will have to be exponential in n.



How large does m need to be?
Consider the example of K = B (0, 1/2). Then K ⊆ [−1/2, 1/2]n.

I n = 1
vol (K )

vol ([−1/2, 1/2]n)
= 1.

I n = 2
vol (K )

vol ([−1/2, 1/2]n)
=
π(1/2)2

1
=
π

4
.

I n = 3
vol (K )

vol ([−1/2, 1/2]n)
=

4π/3(1/2)3

1
=
π

6
.

I For general n
vol (K )

vol ([−1/2, 1/2]n)
≤ cn

for some constant c ∈ (0, 1).

Therefore, m will have to be exponential in n.



How large does m need to be?
Consider the example of K = B (0, 1/2). Then K ⊆ [−1/2, 1/2]n.

I n = 1
vol (K )

vol ([−1/2, 1/2]n)
= 1.

I n = 2
vol (K )

vol ([−1/2, 1/2]n)
=
π(1/2)2

1
=
π

4
.

I n = 3
vol (K )

vol ([−1/2, 1/2]n)
=

4π/3(1/2)3

1
=
π

6
.

I For general n
vol (K )

vol ([−1/2, 1/2]n)
≤ cn

for some constant c ∈ (0, 1).

Therefore, m will have to be exponential in n.



Second attempt

For any convex S1 ⊂ S2 . . . ⊂ SL such that S1 ⊆ K ⊆ SL, we have

vol (K ) =
vol (K ∩ SL)

vol (K ∩ SL−1)
· vol (K ∩ SL−1)

vol (K ∩ SL−2)
· · · vol (K ∩ S2)

vol (K ∩ S1)
· vol (S1) .

I Choose {Si : i ∈ [L]} such that vol (K ∩ Si ) /vol (K ∩ Si−1) can be estimated by
sampling, i.e., sample points from K ∩ Si and count how many of them belong to
K ∩ Si−1.

I This can be done in polynomial time if vol (K ∩ Si ) /vol (K ∩ Si−1) ≤ poly (n)
(H.W.).

I Choose Si = B (0,Ri ) where R1 = 1 and Ri+1 = (1 + 1/n)Ri .

I Then Ri = (1 + 1/n)i−1R1 = (1 + 1/n)i−1.



Second attempt

For any convex S1 ⊂ S2 . . . ⊂ SL such that S1 ⊆ K ⊆ SL, we have

vol (K ) =
vol (K ∩ SL)

vol (K ∩ SL−1)
· vol (K ∩ SL−1)

vol (K ∩ SL−2)
· · · vol (K ∩ S2)

vol (K ∩ S1)
· vol (S1) .

I Choose {Si : i ∈ [L]} such that vol (K ∩ Si ) /vol (K ∩ Si−1) can be estimated by
sampling, i.e., sample points from K ∩ Si and count how many of them belong to
K ∩ Si−1.

I This can be done in polynomial time if vol (K ∩ Si ) /vol (K ∩ Si−1) ≤ poly (n)
(H.W.).

I Choose Si = B (0,Ri ) where R1 = 1 and Ri+1 = (1 + 1/n)Ri .

I Then Ri = (1 + 1/n)i−1R1 = (1 + 1/n)i−1.



Second attempt

For any convex S1 ⊂ S2 . . . ⊂ SL such that S1 ⊆ K ⊆ SL, we have

vol (K ) =
vol (K ∩ SL)

vol (K ∩ SL−1)
· vol (K ∩ SL−1)

vol (K ∩ SL−2)
· · · vol (K ∩ S2)

vol (K ∩ S1)
· vol (S1) .

I Choose {Si : i ∈ [L]} such that vol (K ∩ Si ) /vol (K ∩ Si−1) can be estimated by
sampling, i.e., sample points from K ∩ Si and count how many of them belong to
K ∩ Si−1.

I This can be done in polynomial time if vol (K ∩ Si ) /vol (K ∩ Si−1) ≤ poly (n)
(H.W.).

I Choose Si = B (0,Ri ) where R1 = 1 and Ri+1 = (1 + 1/n)Ri .

I Then Ri = (1 + 1/n)i−1R1 = (1 + 1/n)i−1.



Second attempt

For any convex S1 ⊂ S2 . . . ⊂ SL such that S1 ⊆ K ⊆ SL, we have

vol (K ) =
vol (K ∩ SL)

vol (K ∩ SL−1)
· vol (K ∩ SL−1)

vol (K ∩ SL−2)
· · · vol (K ∩ S2)

vol (K ∩ S1)
· vol (S1) .

I Choose {Si : i ∈ [L]} such that vol (K ∩ Si ) /vol (K ∩ Si−1) can be estimated by
sampling, i.e., sample points from K ∩ Si and count how many of them belong to
K ∩ Si−1.

I This can be done in polynomial time if vol (K ∩ Si ) /vol (K ∩ Si−1) ≤ poly (n)
(H.W.).

I Choose Si = B (0,Ri ) where R1 = 1 and Ri+1 = (1 + 1/n)Ri .

I Then Ri = (1 + 1/n)i−1R1 = (1 + 1/n)i−1.



Since we want K ⊆ SL, it suffices to have RL ≥ R. Therefore,

R ≤ RL =

(
1 +

1

n

)L−1
≤ e(L−1)/n =⇒ L− 1 ≥ n logR.

Fact
To estimate the product of L quatities to relative error ε, it suffices to estimate each
quantity to a relative error of O(ε/L).

I Since Si ∩ K ⊆ (1 + 1/n) (Si−1 ∩ K ), we have vol(Si∩K)
vol(Si−1∩K) ≤ e (why?).

I Therefore, vol (Si ∩ K ) /vol (Si−1 ∩ K ) can be estimated using a polynomial
number of uniform random samples from Si ∩ K .

I Si ∩ K is convex. We use random walks for sampling “approximately uniform”
random points from Si ∩ K . This will also suffice for estimating volume.



Since we want K ⊆ SL, it suffices to have RL ≥ R. Therefore,

R ≤ RL =

(
1 +

1

n

)L−1
≤ e(L−1)/n =⇒ L− 1 ≥ n logR.

Fact
To estimate the product of L quatities to relative error ε, it suffices to estimate each
quantity to a relative error of O(ε/L).

I Since Si ∩ K ⊆ (1 + 1/n) (Si−1 ∩ K ), we have vol(Si∩K)
vol(Si−1∩K) ≤ e (why?).

I Therefore, vol (Si ∩ K ) /vol (Si−1 ∩ K ) can be estimated using a polynomial
number of uniform random samples from Si ∩ K .

I Si ∩ K is convex. We use random walks for sampling “approximately uniform”
random points from Si ∩ K . This will also suffice for estimating volume.



Since we want K ⊆ SL, it suffices to have RL ≥ R. Therefore,

R ≤ RL =

(
1 +

1

n

)L−1
≤ e(L−1)/n =⇒ L− 1 ≥ n logR.

Fact
To estimate the product of L quatities to relative error ε, it suffices to estimate each
quantity to a relative error of O(ε/L).

I Since Si ∩ K ⊆ (1 + 1/n) (Si−1 ∩ K ), we have vol(Si∩K)
vol(Si−1∩K) ≤ e (why?).

I Therefore, vol (Si ∩ K ) /vol (Si−1 ∩ K ) can be estimated using a polynomial
number of uniform random samples from Si ∩ K .

I Si ∩ K is convex. We use random walks for sampling “approximately uniform”
random points from Si ∩ K . This will also suffice for estimating volume.



Since we want K ⊆ SL, it suffices to have RL ≥ R. Therefore,

R ≤ RL =

(
1 +

1

n

)L−1
≤ e(L−1)/n =⇒ L− 1 ≥ n logR.

Fact
To estimate the product of L quatities to relative error ε, it suffices to estimate each
quantity to a relative error of O(ε/L).

I Since Si ∩ K ⊆ (1 + 1/n) (Si−1 ∩ K ), we have vol(Si∩K)
vol(Si−1∩K) ≤ e (why?).

I Therefore, vol (Si ∩ K ) /vol (Si−1 ∩ K ) can be estimated using a polynomial
number of uniform random samples from Si ∩ K .

I Si ∩ K is convex. We use random walks for sampling “approximately uniform”
random points from Si ∩ K . This will also suffice for estimating volume.



Since we want K ⊆ SL, it suffices to have RL ≥ R. Therefore,

R ≤ RL =

(
1 +

1

n

)L−1
≤ e(L−1)/n =⇒ L− 1 ≥ n logR.

Fact
To estimate the product of L quatities to relative error ε, it suffices to estimate each
quantity to a relative error of O(ε/L).

I Since Si ∩ K ⊆ (1 + 1/n) (Si−1 ∩ K ), we have vol(Si∩K)
vol(Si−1∩K) ≤ e (why?).

I Therefore, vol (Si ∩ K ) /vol (Si−1 ∩ K ) can be estimated using a polynomial
number of uniform random samples from Si ∩ K .

I Si ∩ K is convex. We use random walks for sampling “approximately uniform”
random points from Si ∩ K . This will also suffice for estimating volume.



Grid Walk(δ)

I Impose a grid of side length δ on K .

I The neighbours of point x on the grid are {x ± δei : i ∈ [n]} ∩ K .

I At point x ,

1. Probability of moving to each neighbor of x is 1/(4n).
2. Walk stays at x with remaining probability.

I Walk can be performed using membership oracle for K .

I Number of vertices can be exponential in n, for e.g., K = [0, 1]n.

I Stationary distribution π is the uniform distribution on the vertices.

Theorem (Informal)

Mixing time of the Grid walk is polynomial.



Grid Walk(δ)

I Impose a grid of side length δ on K .

I The neighbours of point x on the grid are {x ± δei : i ∈ [n]} ∩ K .
I At point x ,

1. Probability of moving to each neighbor of x is 1/(4n).
2. Walk stays at x with remaining probability.

I Walk can be performed using membership oracle for K .

I Number of vertices can be exponential in n, for e.g., K = [0, 1]n.

I Stationary distribution π is the uniform distribution on the vertices.

Theorem (Informal)

Mixing time of the Grid walk is polynomial.



Grid Walk(δ)

I Impose a grid of side length δ on K .

I The neighbours of point x on the grid are {x ± δei : i ∈ [n]} ∩ K .
I At point x ,

1. Probability of moving to each neighbor of x is 1/(4n).
2. Walk stays at x with remaining probability.

I Walk can be performed using membership oracle for K .

I Number of vertices can be exponential in n, for e.g., K = [0, 1]n.

I Stationary distribution π is the uniform distribution on the vertices.

Theorem (Informal)

Mixing time of the Grid walk is polynomial.



Grid Walk(δ)

I Impose a grid of side length δ on K .

I The neighbours of point x on the grid are {x ± δei : i ∈ [n]} ∩ K .
I At point x ,

1. Probability of moving to each neighbor of x is 1/(4n).
2. Walk stays at x with remaining probability.

I Walk can be performed using membership oracle for K .

I Number of vertices can be exponential in n, for e.g., K = [0, 1]n.

I Stationary distribution π is the uniform distribution on the vertices.

Theorem (Informal)

Mixing time of the Grid walk is polynomial.



Grid Walk(δ)

I Impose a grid of side length δ on K .

I The neighbours of point x on the grid are {x ± δei : i ∈ [n]} ∩ K .
I At point x ,

1. Probability of moving to each neighbor of x is 1/(4n).
2. Walk stays at x with remaining probability.

I Walk can be performed using membership oracle for K .

I Number of vertices can be exponential in n, for e.g., K = [0, 1]n.

I Stationary distribution π is the uniform distribution on the vertices.

Theorem (Informal)

Mixing time of the Grid walk is polynomial.



Grid Walk(δ)

I Impose a grid of side length δ on K .

I The neighbours of point x on the grid are {x ± δei : i ∈ [n]} ∩ K .
I At point x ,

1. Probability of moving to each neighbor of x is 1/(4n).
2. Walk stays at x with remaining probability.

I Walk can be performed using membership oracle for K .

I Number of vertices can be exponential in n, for e.g., K = [0, 1]n.

I Stationary distribution π is the uniform distribution on the vertices.

Theorem (Informal)

Mixing time of the Grid walk is polynomial.



Grid Walk

Final point output by walk will not be random from all of K , but only from a subset of
K .

I If x is the final point in the walk, output a random point in
Πi∈[n][xi − δ/2, xi + δ/2].

This may give some points not in K , and may miss some points in K .

I Sample points from the cube till we get a point from K?

This may not give uniform distribution on points from K . Each cube needs to be
chosen with probability proportional to its intersection with K .

I If the final point does not belong to K , then start again from beginning.

The space of grid points in K may not be connected.

I Work with K ′ := (1 + α)K .



Grid Walk

Final point output by walk will not be random from all of K , but only from a subset of
K .

I If x is the final point in the walk, output a random point in
Πi∈[n][xi − δ/2, xi + δ/2].

This may give some points not in K , and may miss some points in K .

I Sample points from the cube till we get a point from K?

This may not give uniform distribution on points from K . Each cube needs to be
chosen with probability proportional to its intersection with K .

I If the final point does not belong to K , then start again from beginning.

The space of grid points in K may not be connected.

I Work with K ′ := (1 + α)K .



Grid Walk

Final point output by walk will not be random from all of K , but only from a subset of
K .

I If x is the final point in the walk, output a random point in
Πi∈[n][xi − δ/2, xi + δ/2].

This may give some points not in K , and may miss some points in K .

I Sample points from the cube till we get a point from K?

This may not give uniform distribution on points from K . Each cube needs to be
chosen with probability proportional to its intersection with K .

I If the final point does not belong to K , then start again from beginning.

The space of grid points in K may not be connected.

I Work with K ′ := (1 + α)K .



Grid Walk

Final point output by walk will not be random from all of K , but only from a subset of
K .

I If x is the final point in the walk, output a random point in
Πi∈[n][xi − δ/2, xi + δ/2].

This may give some points not in K , and may miss some points in K .

I Sample points from the cube till we get a point from K?

This may not give uniform distribution on points from K . Each cube needs to be
chosen with probability proportional to its intersection with K .

I If the final point does not belong to K , then start again from beginning.

The space of grid points in K may not be connected.

I Work with K ′ := (1 + α)K .



Grid Walk

Final point output by walk will not be random from all of K , but only from a subset of
K .

I If x is the final point in the walk, output a random point in
Πi∈[n][xi − δ/2, xi + δ/2].

This may give some points not in K , and may miss some points in K .

I Sample points from the cube till we get a point from K?

This may not give uniform distribution on points from K . Each cube needs to be
chosen with probability proportional to its intersection with K .

I If the final point does not belong to K , then start again from beginning.

The space of grid points in K may not be connected.

I Work with K ′ := (1 + α)K .



Grid Walk

Final point output by walk will not be random from all of K , but only from a subset of
K .

I If x is the final point in the walk, output a random point in
Πi∈[n][xi − δ/2, xi + δ/2].

This may give some points not in K , and may miss some points in K .

I Sample points from the cube till we get a point from K?

This may not give uniform distribution on points from K . Each cube needs to be
chosen with probability proportional to its intersection with K .

I If the final point does not belong to K , then start again from beginning.

The space of grid points in K may not be connected.

I Work with K ′ := (1 + α)K .



Grid Walk

Final point output by walk will not be random from all of K , but only from a subset of
K .

I If x is the final point in the walk, output a random point in
Πi∈[n][xi − δ/2, xi + δ/2].

This may give some points not in K , and may miss some points in K .

I Sample points from the cube till we get a point from K?

This may not give uniform distribution on points from K . Each cube needs to be
chosen with probability proportional to its intersection with K .

I If the final point does not belong to K , then start again from beginning.

The space of grid points in K may not be connected.

I Work with K ′ := (1 + α)K .



Set α := δ
√
n.

I Any cube that intersects K will be fully contained in K ′ (H.W.).

I Any two grid points in K are connected in K ′.

Algorithm: Perform grid walk on K ′. If x is the final point in the walk, output a
random point in Πi∈[n][xi − δ/2, xi + δ/2]. If the final point does not belong to K ,
then start again from beginning.

I Probability of success is vol (K ) divided by the volume of all δ-cubes whose
centers are in K ′. By the argument above, every such cube is contained in
(1 + α)K ′. Therefore, probability of success is at least

vol (K )

vol ((1 + α)K ′)
=

vol (K )

vol ((1 + α)2K )
=

1

(1 + α)2n
= (1 + δ

√
n)−2n.

Therefore, if we choose δ = 1/(cn1.5), then probability of success is at least a constant.



Set α := δ
√
n.

I Any cube that intersects K will be fully contained in K ′ (H.W.).

I Any two grid points in K are connected in K ′.

Algorithm: Perform grid walk on K ′. If x is the final point in the walk, output a
random point in Πi∈[n][xi − δ/2, xi + δ/2]. If the final point does not belong to K ,
then start again from beginning.

I Probability of success is vol (K ) divided by the volume of all δ-cubes whose
centers are in K ′. By the argument above, every such cube is contained in
(1 + α)K ′. Therefore, probability of success is at least

vol (K )

vol ((1 + α)K ′)
=

vol (K )

vol ((1 + α)2K )
=

1

(1 + α)2n
= (1 + δ

√
n)−2n.

Therefore, if we choose δ = 1/(cn1.5), then probability of success is at least a constant.



Set α := δ
√
n.

I Any cube that intersects K will be fully contained in K ′ (H.W.).

I Any two grid points in K are connected in K ′.

Algorithm: Perform grid walk on K ′. If x is the final point in the walk, output a
random point in Πi∈[n][xi − δ/2, xi + δ/2]. If the final point does not belong to K ,
then start again from beginning.

I Probability of success is vol (K ) divided by the volume of all δ-cubes whose
centers are in K ′. By the argument above, every such cube is contained in
(1 + α)K ′. Therefore, probability of success is at least

vol (K )

vol ((1 + α)K ′)
=

vol (K )

vol ((1 + α)2K )
=

1

(1 + α)2n
= (1 + δ

√
n)−2n.

Therefore, if we choose δ = 1/(cn1.5), then probability of success is at least a constant.



Set α := δ
√
n.

I Any cube that intersects K will be fully contained in K ′ (H.W.).

I Any two grid points in K are connected in K ′.

Algorithm: Perform grid walk on K ′. If x is the final point in the walk, output a
random point in Πi∈[n][xi − δ/2, xi + δ/2]. If the final point does not belong to K ,
then start again from beginning.

I Probability of success is vol (K ) divided by the volume of all δ-cubes whose
centers are in K ′. By the argument above, every such cube is contained in
(1 + α)K ′. Therefore, probability of success is at least

vol (K )

vol ((1 + α)K ′)
=

vol (K )

vol ((1 + α)2K )
=

1

(1 + α)2n
= (1 + δ

√
n)−2n.

Therefore, if we choose δ = 1/(cn1.5), then probability of success is at least a constant.



Set α := δ
√
n.

I Any cube that intersects K will be fully contained in K ′ (H.W.).

I Any two grid points in K are connected in K ′.

Algorithm: Perform grid walk on K ′. If x is the final point in the walk, output a
random point in Πi∈[n][xi − δ/2, xi + δ/2]. If the final point does not belong to K ,
then start again from beginning.

I Probability of success is vol (K ) divided by the volume of all δ-cubes whose
centers are in K ′. By the argument above, every such cube is contained in
(1 + α)K ′. Therefore, probability of success is at least

vol (K )

vol ((1 + α)K ′)
=

vol (K )

vol ((1 + α)2K )
=

1

(1 + α)2n
= (1 + δ

√
n)−2n.

Therefore, if we choose δ = 1/(cn1.5), then probability of success is at least a constant.



Set α := δ
√
n.

I Any cube that intersects K will be fully contained in K ′ (H.W.).

I Any two grid points in K are connected in K ′.

Algorithm: Perform grid walk on K ′. If x is the final point in the walk, output a
random point in Πi∈[n][xi − δ/2, xi + δ/2]. If the final point does not belong to K ,
then start again from beginning.

I Probability of success is vol (K ) divided by the volume of all δ-cubes whose
centers are in K ′. By the argument above, every such cube is contained in
(1 + α)K ′. Therefore, probability of success is at least

vol (K )

vol ((1 + α)K ′)
=

vol (K )

vol ((1 + α)2K )
=

1

(1 + α)2n
= (1 + δ

√
n)−2n.

Therefore, if we choose δ = 1/(cn1.5), then probability of success is at least a constant.



Some other random walks

Definition (Ball Walk(δ))

1. Pick a uniform random point y from the ball of radius δ centered at the current
point x .

2. If y is in K , then go to y ; else stay at x .

Definition (Hit-and-run)

1. Pick a uniform random line ` through the current point x .

2. Go to a uniform random point on the chord ` ∩ K .



Some other random walks

Definition (Ball Walk(δ))

1. Pick a uniform random point y from the ball of radius δ centered at the current
point x .

2. If y is in K , then go to y ; else stay at x .

Definition (Hit-and-run)

1. Pick a uniform random line ` through the current point x .

2. Go to a uniform random point on the chord ` ∩ K .


