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Sampling from a convex body K

Given a convex body K ⊂ Rn, output a uniform random point from K .

I Oracle access to K . Given x ∈ Rn, oracle answers in O(1) time whether x ∈ K .

I Also need some point in K as input. W.l.o.g., assume that 0 ∈ K .

I Also given r ,R > 0 such that B (0, r) ⊆ K ⊆ B (0,R). W.l.o.g. assume that
r = 1.

Has applications in volume estimation, optimization, etc.
Estimating volumes is a classical problem. Closed form formulae known for rectangular
solids, simplices, spheres, etc.
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Computing volumes

Theorem (Informal statement)

There is no deterministic polynomial algorithm that, given a membership oracle for K ,
computes vol (K ) to within a polynomial factor.

Proof idea.
Consider an oracle that answers “yes” to any point in the unit ball and “no” to any
point outside. After m “yes” answers, the convex body K could be anything between
the ball and the convex hull of the m query points. The ratio of these volumes in
exponential in n.
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The power of randomness!

Theorem (Informal statement)

There exists a randomized algorithm that, given a membership oracle for K and a
parameter ε, runs in time polynomial in n, 1/ε and logR and outputs an estimate A
such that w.h.p. we have (1− ε)vol (K ) ≤ A ≤ (1 + ε)vol (K ).

I Main idea: algorithm for “approximately uniform” sampling from K .

I First proved by [Dyer, Frieze, Kannan - 89]. Many new developments since then
leading to a rich theory of geometric random walks!

First attempt. Suppose K ⊆ [−1/2, 1/2]n.

I Sample m uniform random points from [−1/2, 1/2]n and count how many belong
to K . Let m′ of them belong to K . Output m′/m.

E
[
m′

m

]
=

vol (K )

vol ([−1/2, 1/2]n)
= vol (K ) .
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How large does m need to be?
Consider the example of K = B (0, 1/2). Then K ⊆ [−1/2, 1/2]n.

I n = 1
vol (K )

vol ([−1/2, 1/2]n)
= 1.

I n = 2
vol (K )

vol ([−1/2, 1/2]n)
=
π(1/2)2

1
=
π

4
.

I n = 3
vol (K )

vol ([−1/2, 1/2]n)
=

4π/3(1/2)3

1
=
π

6
.

I For general n
vol (K )

vol ([−1/2, 1/2]n)
≤ cn

for some constant c ∈ (0, 1).

Therefore, m will have to be exponential in n.
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Second attempt

For any convex S1 ⊂ S2 . . . ⊂ SL such that S1 ⊆ K ⊆ SL, we have

vol (K ) =
vol (K ∩ SL)

vol (K ∩ SL−1)
· vol (K ∩ SL−1)

vol (K ∩ SL−2)
· · · vol (K ∩ S2)

vol (K ∩ S1)
· vol (S1) .

I Choose {Si : i ∈ [L]} such that vol (K ∩ Si ) /vol (K ∩ Si−1) can be estimated by
sampling, i.e., sample points from K ∩ Si and count how many of them belong to
K ∩ Si−1.

I This can be done in polynomial time if vol (K ∩ Si ) /vol (K ∩ Si−1) ≤ poly (n)
(H.W.).

I Choose Si = B (0,Ri ) where R1 = 1 and Ri+1 = (1 + 1/n)Ri .

I Then Ri = (1 + 1/n)i−1R1 = (1 + 1/n)i−1.
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Since we want K ⊆ SL, it suffices to have RL ≥ R. Therefore,

R ≤ RL =

(
1 +

1

n

)L−1
≤ e(L−1)/n =⇒ L− 1 ≥ n logR.

Fact
To estimate the product of L quatities to relative error ε, it suffices to estimate each
quantity to a relative error of O(ε/L).

I Since Si ∩ K ⊆ (1 + 1/n) (Si−1 ∩ K ), we have vol(Si∩K)
vol(Si−1∩K) ≤ e (why?).

I Therefore, vol (Si ∩ K ) /vol (Si−1 ∩ K ) can be estimated using a polynomial
number of uniform random samples from Si ∩ K .

I Si ∩ K is convex. We use random walks for sampling “approximately uniform”
random points from Si ∩ K . This will also suffice for estimating volume.
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Grid Walk(δ)

I Impose a grid of side length δ on K .

I The neighbours of point x on the grid are {x ± δei : i ∈ [n]} ∩ K .

I At point x ,

1. Probability of moving to each neighbor of x is 1/(4n).
2. Walk stays at x with remaining probability.

I Walk can be performed using membership oracle for K .

I Number of vertices can be exponential in n, for e.g., K = [0, 1]n.

I Stationary distribution π is the uniform distribution on the vertices.

Theorem (Informal)

Mixing time of the Grid walk is polynomial.
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Grid Walk

Final point output by walk will not be random from all of K , but only from a subset of
K .

I If x is the final point in the walk, output a random point in
Πi∈[n][xi − δ/2, xi + δ/2].

This may give some points not in K , and may miss some points in K .

I Sample points from the cube till we get a point from K?

This may not give uniform distribution on points from K . Each cube needs to be
chosen with probability proportional to its intersection with K .

I If the final point does not belong to K , then start again from beginning.

The space of grid points in K may not be connected.

I Work with K ′ := (1 + α)K .
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This may not give uniform distribution on points from K . Each cube needs to be
chosen with probability proportional to its intersection with K .

I If the final point does not belong to K , then start again from beginning.

The space of grid points in K may not be connected.
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Set α := δ
√
n.

I Any cube that intersects K will be fully contained in K ′ (H.W.).

I Any two grid points in K are connected in K ′.

Algorithm: Perform grid walk on K ′. If x is the final point in the walk, output a
random point in Πi∈[n][xi − δ/2, xi + δ/2]. If the final point does not belong to K ,
then start again from beginning.

I Probability of success is vol (K ) divided by the volume of all δ-cubes whose
centers are in K ′. By the argument above, every such cube is contained in
(1 + α)K ′. Therefore, probability of success is at least

vol (K )

vol ((1 + α)K ′)
=

vol (K )

vol ((1 + α)2K )
=

1

(1 + α)2n
= (1 + δ

√
n)−2n.

Therefore, if we choose δ = 1/(cn1.5), then probability of success is at least a constant.
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Some other random walks

Definition (Ball Walk(δ))

1. Pick a uniform random point y from the ball of radius δ centered at the current
point x .

2. If y is in K , then go to y ; else stay at x .

Definition (Hit-and-run)

1. Pick a uniform random line ` through the current point x .

2. Go to a uniform random point on the chord ` ∩ K .
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