Sampling Bases of a Matroid

Sruthi Gorantla, Bhargav Thankey

IISc

May 11, 2021

A matroid $M = ([n], \mathcal{I})$ is a combinatorial structure consisting of a ground set [n] of elements and a nonempty collection \mathcal{I} of independent subsets of [n] satisfying,

A matroid $M = ([n], \mathcal{I})$ is a combinatorial structure consisting of a ground set [n] of elements and a nonempty collection \mathcal{I} of independent subsets of [n] satisfying,

1. Hereditary property: If $S \subseteq T$ and $T \in I$, then $S \in I$.

A matroid $M = ([n], \mathcal{I})$ is a combinatorial structure consisting of a ground set [n] of elements and a nonempty collection \mathcal{I} of independent subsets of [n] satisfying,

- **1**. Hereditary property: If $S \subseteq T$ and $T \in I$, then $S \in I$.
- **2.** Exchange axiom: If $S, T \in \mathcal{I}$ and |T| > |S|, then there exists an element $i \in T \setminus S$ such that $S \cup \{i\} \in \mathcal{I}$.

A matroid $M = ([n], \mathcal{I})$ is a combinatorial structure consisting of a ground set [n] of elements and a nonempty collection \mathcal{I} of independent subsets of [n] satisfying,

- **1.** Hereditary property: If $S \subseteq T$ and $T \in I$, then $S \in I$.
- **2.** Exchange axiom: If $S, T \in \mathcal{I}$ and |T| > |S|, then there exists an element $i \in T \setminus S$ such that $S \cup \{i\} \in \mathcal{I}$.

Example: For n = 3, consider the following collections of independent sets, 1. $\mathcal{I} = \{\varphi, \{1\}, \{2\}, \{1,3\}\}$

A matroid $M = ([n], \mathcal{I})$ is a combinatorial structure consisting of a ground set [n] of elements and a nonempty collection \mathcal{I} of independent subsets of [n] satisfying,

- **1.** Hereditary property: If $S \subseteq T$ and $T \in I$, then $S \in I$.
- **2.** Exchange axiom: If $S, T \in \mathcal{I}$ and |T| > |S|, then there exists an element $i \in T \setminus S$ such that $S \cup \{i\} \in \mathcal{I}$.

Example: For n = 3, consider the following collections of independent sets, 1. $\mathcal{I} = \{\varphi, \{1\}, \{2\}, \{1,3\}\}$ satisfies neither (1) nor (2).

A matroid $M = ([n], \mathcal{I})$ is a combinatorial structure consisting of a ground set [n] of elements and a nonempty collection \mathcal{I} of independent subsets of [n] satisfying,

- **1.** Hereditary property: If $S \subseteq T$ and $T \in I$, then $S \in I$.
- **2.** Exchange axiom: If $S, T \in \mathcal{I}$ and |T| > |S|, then there exists an element $i \in T \setminus S$ such that $S \cup \{i\} \in \mathcal{I}$.

- 1. $\mathcal{I} = \{\varphi, \{1\}, \{2\}, \{1,3\}\}$ satisfies neither (1) nor (2).
- **2.** $\mathcal{I} = \{\varphi, \{1\}, \{2\}, \{3\}, \{1, 2\}\}$

A matroid $M = ([n], \mathcal{I})$ is a combinatorial structure consisting of a ground set [n] of elements and a nonempty collection \mathcal{I} of independent subsets of [n] satisfying,

- **1.** Hereditary property: If $S \subseteq T$ and $T \in I$, then $S \in I$.
- **2.** Exchange axiom: If $S, T \in \mathcal{I}$ and |T| > |S|, then there exists an element $i \in T \setminus S$ such that $S \cup \{i\} \in \mathcal{I}$.

- 1. $\mathcal{I} = \{\varphi, \{1\}, \{2\}, \{1,3\}\}$ satisfies neither (1) nor (2).
- **2.** $\mathcal{I} = \{\varphi, \{1\}, \{2\}, \{3\}, \{1, 2\}\}$ satisfies only (1).

A matroid $M = ([n], \mathcal{I})$ is a combinatorial structure consisting of a ground set [n] of elements and a nonempty collection \mathcal{I} of independent subsets of [n] satisfying,

- **1.** Hereditary property: If $S \subseteq T$ and $T \in I$, then $S \in I$.
- **2.** Exchange axiom: If $S, T \in \mathcal{I}$ and |T| > |S|, then there exists an element $i \in T \setminus S$ such that $S \cup \{i\} \in \mathcal{I}$.

- 1. $\mathcal{I} = \{\varphi, \{1\}, \{2\}, \{1,3\}\}$ satisfies neither (1) nor (2).
- **2.** $\mathcal{I} = \{\varphi, \{1\}, \{2\}, \{3\}, \{1, 2\}\}$ satisfies only (1).
- **3.** $\mathcal{I} = \{\varphi, \{1\}, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 3\}\}$

A matroid $M = ([n], \mathcal{I})$ is a combinatorial structure consisting of a ground set [n] of elements and a nonempty collection \mathcal{I} of independent subsets of [n] satisfying,

- **1.** Hereditary property: If $S \subseteq T$ and $T \in I$, then $S \in I$.
- **2.** Exchange axiom: If $S, T \in \mathcal{I}$ and |T| > |S|, then there exists an element $i \in T \setminus S$ such that $S \cup \{i\} \in \mathcal{I}$.

- 1. $\mathcal{I} = \{\varphi, \{1\}, \{2\}, \{1,3\}\}$ satisfies neither (1) nor (2).
- **2.** $\mathcal{I} = \{\varphi, \{1\}, \{2\}, \{3\}, \{1, 2\}\}$ satisfies only (1).
- 3. $\mathcal{I} = \{\varphi, \{1\}, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 3\}\}$ satisfies only (2).

A matroid $M = ([n], \mathcal{I})$ is a combinatorial structure consisting of a ground set [n] of elements and a nonempty collection \mathcal{I} of independent subsets of [n] satisfying,

- **1.** Hereditary property: If $S \subseteq T$ and $T \in I$, then $S \in I$.
- **2.** Exchange axiom: If $S, T \in \mathcal{I}$ and |T| > |S|, then there exists an element $i \in T \setminus S$ such that $S \cup \{i\} \in \mathcal{I}$.

- 1. $\mathcal{I} = \{\varphi, \{1\}, \{2\}, \{1, 3\}\}$ satisfies neither (1) nor (2).
- **2.** $\mathcal{I} = \{\varphi, \{1\}, \{2\}, \{3\}, \{1, 2\}\}$ satisfies only (1).
- **3**. $\mathcal{I} = \{\varphi, \{1\}, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 3\}\}$ satisfies only (2).
- **4.** $\mathcal{I} = \{\varphi, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}\}$

A matroid $M = ([n], \mathcal{I})$ is a combinatorial structure consisting of a ground set [n] of elements and a nonempty collection \mathcal{I} of independent subsets of [n] satisfying,

- **1.** Hereditary property: If $S \subseteq T$ and $T \in I$, then $S \in I$.
- **2.** Exchange axiom: If $S, T \in \mathcal{I}$ and |T| > |S|, then there exists an element $i \in T \setminus S$ such that $S \cup \{i\} \in \mathcal{I}$.

- 1. $\mathcal{I} = \{\varphi, \{1\}, \{2\}, \{1, 3\}\}$ satisfies neither (1) nor (2).
- **2.** $\mathcal{I} = \{\varphi, \{1\}, \{2\}, \{3\}, \{1, 2\}\}$ satisfies only (1).
- **3**. $\mathcal{I} = \{\varphi, \{1\}, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 3\}\}$ satisfies only (2).
- **4.** $\mathcal{I} = \{\varphi, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}\}$ satisfies both.

► Rank: For a subset S ⊂ [n], rank(S) is defined as the size of the maximal independent set of M contained in S.

- ► Rank: For a subset S ⊂ [n], rank(S) is defined as the size of the maximal independent set of M contained in S.
- **Basis:** Any independent set of M such that its rank is rank([n]) is a basis of M.

- ► Rank: For a subset S ⊂ [n], rank(S) is defined as the size of the maximal independent set of M contained in S.
- **Basis:** Any independent set of M such that its rank is rank([n]) is a basis of M.
- ▶ Loop: An element $i \in [n]$ is a loop if $\{i\} \notin \mathcal{I}$.

- ► Rank: For a subset S ⊂ [n], rank(S) is defined as the size of the maximal independent set of M contained in S.
- **Basis:** Any independent set of M such that its rank is rank([n]) is a basis of M.
- ▶ Loop: An element $i \in [n]$ is a loop if $\{i\} \notin \mathcal{I}$.
- ▶ **Parallel:** Two non-loops $i, j \in [n]$ are parallel if $\{i, j\} \notin \mathcal{I}$.

- ► Rank: For a subset S ⊂ [n], rank(S) is defined as the size of the maximal independent set of M contained in S.
- **Basis:** Any independent set of M such that its rank is rank([n]) is a basis of M.
- ▶ Loop: An element $i \in [n]$ is a loop if $\{i\} \notin \mathcal{I}$.
- ▶ **Parallel:** Two non-loops $i, j \in [n]$ are parallel if $\{i, j\} \notin \mathcal{I}$.
- Contraction: Let M = ([n], I) be a matroid and S ∈ I. Then the contraction M/S is the matroid with ground set [n] \ S and independent sets {T ⊆ [n] \ S | T ∪ S ∈ I}.

- ► Rank: For a subset S ⊂ [n], rank(S) is defined as the size of the maximal independent set of M contained in S.
- **Basis:** Any independent set of M such that its rank is rank([n]) is a basis of M.
- ▶ Loop: An element $i \in [n]$ is a loop if $\{i\} \notin \mathcal{I}$.
- ▶ **Parallel:** Two non-loops $i, j \in [n]$ are parallel if $\{i, j\} \notin \mathcal{I}$.
- ▶ Contraction: Let $M = ([n], \mathcal{I})$ be a matroid and $S \in \mathcal{I}$. Then the contraction M/S is the matroid with ground set $[n] \setminus S$ and independent sets $\{T \subseteq [n] \setminus S \mid T \cup S \in \mathcal{I}\}.$

Example: Consider the matroid $M = ([4], \{\varphi, \{1\}, \{2\}, \{3\}, \{1,3\}, \{2,3\}\})$. Then, rank([4]) = 2, the bases are $\{1,3\}$ and $\{2,3\}$. 4 is a loop. $\{1,2\}$ is a parallel. For $S = \{3\}, M' = M/S = (\{1,2,4\}, \{\varphi, \{1\}, \{2\}\})$ is a contraction.

Problem

Problem

• Given a matroid $M = ([n], \mathcal{I})$, approximately count the number of bases of M.

We will see the polynomial time randomised approximation algorithm proposed in "Log-Concave Polynomials II: High-Dimensional Walks and an FPRAS for Counting Bases of a Matroid. Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant" that appeared in STOC 2019.

- ► FPRAS to sample a uniform random basis of a matroid => FPRAS to count the number of bases of a matroid (Since Sampling ↔ Counting).
- Expansion of the bases exchange graph of a matroid is 1.

Outline

Preliminaries

- Linear Algebra
- Simplicial Complexes
- Walks on Simplicial Complexes and some known results
- Strongly log-concave polynomials
- ► Main results of the paper
- Some applications

A matrix $A \in \mathbb{R}^{n \times n}$ is stochastic if all $A_{ij} \ge 0$ and $\sum_{j \in [n]} A_{ij} = 1, \forall i \in [n]$.

ⁱRoger A Horn and Charles R Johnson. Matrix analysis. 2nd ed. Cambridge university press, 2013.

A matrix $A \in \mathbb{R}^{n \times n}$ is stochastic if all $A_{ij} \ge 0$ and $\sum_{j \in [n]} A_{ij} = 1, \forall i \in [n]$.

Fact: The largest eigenvalue in magnitude of a stochastic matrix is **1**.

ⁱRoger A Horn and Charles R Johnson. Matrix analysis. 2nd ed. Cambridge university press, 2013.

A matrix $A \in \mathbb{R}^{n \times n}$ is stochastic if all $A_{ij} \ge 0$ and $\sum_{j \in [n]} A_{ij} = 1, \forall i \in [n]$.

Fact: The largest eigenvalue in magnitude of a stochastic matrix is **1**.

Cauchy's Interlacing Theorem $[HJ13]^i$: For a symmetric matrix $A \in \mathbb{R}^{n \times n}$ and vector $v \in \mathbb{R}^n$, the eigenvalues of A interlace the eigenvalues of $A + vv^{\top}$. That is, for $B = A + vv^{\top}$,

 $\lambda_n(A) \leq \lambda_n(B) \leq \lambda_{n-1}(A) \leq \cdots \leq \lambda_2(B) \leq \lambda_1(A) \leq \lambda_1(B).$

ⁱRoger A Horn and Charles R Johnson. Matrix analysis. 2nd ed. Cambridge university press, 2013.

Lemma: Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix and let $P \in \mathbb{R}^{m \times n}$. If A has at most one positive eigenvalue, then PAP^{\top} has at most one positive eigenvalue.

Lemma: Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix and let $P \in \mathbb{R}^{m \times n}$. If A has at most one positive eigenvalue, then PAP^{\top} has at most one positive eigenvalue.

Proof: Given A has at most one positive eigenvalue. Therefore, write $A = B + vv^{\top}$ for some vector $v \in \mathbb{R}^n$ and for some $B \leq 0$. Then $PAP^{\top} = PBP^{\top} + Pvv^{\top}P^{\top}$. Then,

$$x^{\top} P B P^{\top} x = (P^{\top} x)^{\top} B (P^{\top} x) \le 0; \quad \forall x \in \mathbb{R}^{m}.$$

Therefore, $PBP^{\top} \preccurlyeq 0$.

Lemma: Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix and let $P \in \mathbb{R}^{m \times n}$. If A has at most one positive eigenvalue, then PAP^{\top} has at most one positive eigenvalue.

Proof: Given A has at most one positive eigenvalue. Therefore, write $A = B + vv^{\top}$ for some vector $v \in \mathbb{R}^n$ and for some $B \leq 0$. Then $PAP^{\top} = PBP^{\top} + Pvv^{\top}P^{\top}$. Then,

$$x^{\top} P B P^{\top} x = (P^{\top} x)^{\top} B (P^{\top} x) \le 0; \qquad \forall x \in \mathbb{R}^{m}.$$

Therefore, $PBP^{\top} \preccurlyeq 0$.

Let $w = Pv \in \mathbb{R}^m$. Then $Pvv^{\top}P^{\top} = ww^{\top}$. By the Cauchy interlacing theorem,

$$\lambda_2 \left(PBP^\top + (Pv)(Pv)^\top \right) \leq \lambda_1 \left(PBP^\top \right) \leq \lambda_1 \left(PBP^\top + (Pv)(Pv)^\top \right),$$

Since all eigenvalues of PBP^{\top} are nonpositive, $PAP^{\top} = PBP^{\top} + ww^{\top}$ has at most one positive eigenvalue.

Fact: Let $A \in \mathbb{R}^{n \times k}$ and $B \in \mathbb{R}^{k \times n}$ be arbitrary matrices. Then, non-zero eigenvalues of *AB* are equal to non-zero eigenvalues of *BA* with the same multiplicity.

Fact: Let $A \in \mathbb{R}^{n \times k}$ and $B \in \mathbb{R}^{k \times n}$ be arbitrary matrices. Then, non-zero eigenvalues of *AB* are equal to non-zero eigenvalues of *BA* with the same multiplicity.

Lemma: Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with at most one positive eigenvalue. Then, for any PSD matrix $B \in \mathbb{R}^{n \times n}$, *BA* has at most one positive eigenvalue.

Fact: Let $A \in \mathbb{R}^{n \times k}$ and $B \in \mathbb{R}^{k \times n}$ be arbitrary matrices. Then, non-zero eigenvalues of *AB* are equal to non-zero eigenvalues of *BA* with the same multiplicity.

Lemma: Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with at most one positive eigenvalue. Then, for any PSD matrix $B \in \mathbb{R}^{n \times n}$, *BA* has at most one positive eigenvalue.

Proof: Since $B \succeq 0$, we can write $B = C^{\top}C$ for some $C \in \mathbb{R}^{n \times n}$. By the fact above, $BA = C^{\top}CA$ has the same nonzero eigenvalues as the matrix CAC^{\top} . Since A has at most one positive eigenvalue, by the previous lemma, CAC^{\top} has at most one positive eigenvalue and so does BA.

Lemma: Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with nonnegative entries and at most one positive eigenvalue, and let $w(i) = \sum_{j=1}^{n} A_{i,j}$. Then,

$$A \preccurlyeq \frac{ww^{\top}}{\sum_{i} w(i)}.$$

Lemma: Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with nonnegative entries and at most one positive eigenvalue, and let $w(i) = \sum_{j=1}^{n} A_{i,j}$. Then,

$$A \preccurlyeq \frac{ww^{\top}}{\sum_{i} w(i)}.$$

Proof: Let W = diag(w). Then, $\mathcal{A} = \underbrace{W^{-1/2} \mathcal{A} W^{-1/2}}_{P\mathcal{A} P^{\top}}$ has at most one positive eigenvalue. Observe that the top eigenvector of \mathcal{A} is the \sqrt{w} vector, where $\sqrt{w}(i) = \sqrt{w(i)}$, for all *i*. In particular, $\mathcal{A}\sqrt{w} = \sqrt{w}$. Therefore, \sqrt{w} is the only eigenvector of \mathcal{A} with positive eigenvalue and we have

$$\mathcal{A} \preccurlyeq \frac{\sqrt{w}\sqrt{w}^{\top}}{\|\sqrt{w}\|^2} \preccurlyeq \frac{\sqrt{w}\sqrt{w}^{\top}}{\sum_i w(i)}$$

Multiplying both sides of the inequality on the left and right by $W^{1/2}$ proves the lemma.

Theorem ((Courant-Fischer Theorem): . Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator that is self-adjoint with respect to some inner product $\langle \cdot, \cdot \rangle$ (not necessarily Euclidean). If $\lambda_n \leq \cdots \leq \lambda_1$ are the eigenvalues of T, then,

 $\lambda_k = \min_{\mathcal{U}} \quad \max_{\mathbf{v}} \langle \mathbf{v}, T \mathbf{v} \rangle,$

where the minimum is taken over all (n - k)-dimensional subspaces $\mathcal{U} \subseteq \mathbb{R}^n$ and the maximum is taken over all the vectors $\mathbf{v} \in \mathcal{U}$ such that $\langle \mathbf{v}, \mathbf{v} \rangle = 1$.

Markov Chains

A Markov chain is a triple (Ω, P, π) ,

- Ω denotes the finite state space.
- $P \in \mathbb{R}_{>0}^{\Omega \times \Omega}$ denotes the transition probability matrix.
- $\pi \in \mathbb{R}^{\Omega}_{\geq 0}$ denotes the stationary distribution of the chain.

Markov Chains

A Markov chain is a triple (Ω, P, π) ,

- Ω denotes the finite state space.
- ▶ $P \in \mathbb{R}_{>0}^{\Omega \times \Omega}$ denotes the transition probability matrix.
- $\pi \in \mathbb{R}^{\Omega}_{\geq 0}$ denotes the stationary distribution of the chain.

A chain (Ω, P, π) is reversible if there is a nonzero nonnegative function $f : \Omega \to \mathbb{R}_{\geq 0}$ such that for any pair of states $\tau, \sigma \in \Omega$,

 $f(\tau)P(\tau,\sigma) = f(\sigma)P(\sigma,\tau).$

Markov Chains

A Markov chain is a triple (Ω, P, π) ,

- Ω denotes the finite state space.
- ▶ $P \in \mathbb{R}_{>0}^{\Omega \times \Omega}$ denotes the transition probability matrix.
- $\pi \in \mathbb{R}^{\Omega}_{\geq 0}$ denotes the stationary distribution of the chain.

A chain (Ω, P, π) is reversible if there is a nonzero nonnegative function $f : \Omega \to \mathbb{R}_{\geq 0}$ such that for any pair of states $\tau, \sigma \in \Omega$,

 $f(\tau)P(\tau,\sigma) = f(\sigma)P(\sigma,\tau).$

Reversible Markov chain can be realized as random walks on weighted graphs G = (V, E, w),

- From a vertex u, choose a neighbour v with probability proportional $w(\{u, v\})$.
- Then, $\pi(u) \propto w(u) = \sum_{v: \{u,v\} \in E} w(\{u,v\}).$
- lts an ϵ -lazy random walk when we stay at the vertex with probability ϵ .
If a Markov chain is reversible then,

1. *f* is proportional to the stationary distribution π .

ⁱⁱPersi Diaconis and Daniel Stroock. "Geometric bounds for eigenvalues of Markov chains". In: The Annals of Applied Probability (1991), pp. 36–61.

If a Markov chain is reversible then,

- 1. f is proportional to the stationary distribution π .
- **2.** *P* is self-adjoint w.r.t. the following $\langle \cdot, \cdot \rangle$ defined for $\varphi, \psi \in \mathbb{R}^{\Omega}$:

$$\langle \varphi, \psi \rangle = \sum_{x \in \Omega} f(x) \varphi(x) \psi(x).$$

ⁱⁱPersi Diaconis and Daniel Stroock. "Geometric bounds for eigenvalues of Markov chains". In: The Annals of Applied Probability (1991), pp. 36–61.

If a Markov chain is reversible then,

- 1. f is proportional to the stationary distribution π .
- **2.** *P* is self-adjoint w.r.t. the following $\langle \cdot, \cdot \rangle$ defined for $\varphi, \psi \in \mathbb{R}^{\Omega}$:

$$\langle \varphi, \psi \rangle = \sum_{x \in \Omega} f(x) \varphi(x) \psi(x).$$

3. the largest eigenvalue of P is 1 (By point 2 and Courant-Fischer Theorem).

ⁱⁱPersi Diaconis and Daniel Stroock. "Geometric bounds for eigenvalues of Markov chains". In: The Annals of Applied Probability (1991), pp. 36–61.

If a Markov chain is reversible then,

- 1. f is proportional to the stationary distribution π .
- 2. *P* is self-adjoint w.r.t. the following $\langle \cdot, \cdot \rangle$ defined for $\varphi, \psi \in \mathbb{R}^{\Omega}$:

$$\langle \varphi, \psi \rangle = \sum_{x \in \Omega} f(x) \varphi(x) \psi(x).$$

- 3. the largest eigenvalue of P is 1 (By point 2 and Courant-Fischer Theorem).
- 4. Let $\lambda^* = \max\{|\lambda_2|, |\lambda_n|\}$. Then we have the following bound on mixing time, *Theorem* [DS91, Prop 3]ⁱⁱ: For any $\epsilon > 0$ and any $\tau \in \Omega$,

$$t_{ au}(\epsilon) \leq rac{1}{1-\lambda^*(P)} \cdot \log\left(rac{1}{\epsilon \cdot \pi(au)}
ight).$$

ⁱⁱPersi Diaconis and Daniel Stroock. "Geometric bounds for eigenvalues of Markov chains". In: The Annals of Applied Probability (1991), pp. 36–61.

Cheeger's Inequality

Definition (Conductance): Conductance of G = (V, E, w) is,

$$\operatorname{cond}(G) = \min_{\varphi \subsetneq S \subsetneq V} \operatorname{cond}(S) = \frac{w(E(S,\overline{S}))}{\operatorname{vol}(S)} = \frac{\sum_{e \in E(S,\overline{S})} w(e)}{\sum_{u \in S} w(u)}.$$

ⁱⁱⁱN. Alon and V. Milman. "Isoperimetric inequalities for graphs, and superconcentrators". In: Journal of Combinatorial Theory, Series B 38.1 (Feb. 1985), pp. 73–88.

 $^{^{\}rm iv}N$ Alon. "Eigenvalues and expanders". In: Combinatorica 6 (2 Jan. 1986), pp. 83–96. issn: 0209-9683.

Cheeger's Inequality

Definition (Conductance): Conductance of G = (V, E, w) is,

$$\operatorname{cond}(G) = \min_{\varphi \subsetneq S \subsetneq V} \operatorname{cond}(S) = \frac{w(E(S,\overline{S}))}{\operatorname{vol}(S)} = \frac{\sum_{e \in E(S,\overline{S})} w(e)}{\sum_{u \in S} w(u)}$$

Theorem (Cheeger's Inequility) [AM85ⁱⁱⁱ, Alo86^{iv}]: For any *d*-regular weighted graph G = (V, E, w),

$$rac{d-\lambda_2(A_G)}{2} \leq {\sf cond}(G) \leq \sqrt{2(d-\lambda_2(A_G))}$$

ⁱⁱⁱN. Alon and V. Milman. "Isoperimetric inequalities for graphs, and superconcentrators". In: Journal of Combinatorial Theory, Series B 38.1 (Feb. 1985), pp. 73–88.

 $^{^{\}rm iv}N$ Alon. "Eigenvalues and expanders". In: Combinatorica 6 (2 Jan. 1986), pp. 83–96. issn: 0209-9683.

Outline

Preliminaries

- Linear Algebra
- Simplicial Complexes
- Walks on Simplicial Complexes and some known results
- Strongly log-concave polynomials
- Main results of the paper
- Some applications

A simplicial complex X on the ground set [n] is a nonempty collection of subsets of [n] that is downward closed, namely if $\tau \subset \sigma$ and $\sigma \in X$, then $\tau \in X$.

A simplicial complex X on the ground set [n] is a nonempty collection of subsets of [n] that is downward closed, namely if $\tau \subset \sigma$ and $\sigma \in X$, then $\tau \in X$.

The elements of X are called **faces/simplices**.

A simplicial complex X on the ground set [n] is a nonempty collection of subsets of [n] that is downward closed, namely if $\tau \subset \sigma$ and $\sigma \in X$, then $\tau \in X$.

The elements of X are called **faces/simplices**.

The dimension of a face τ is defined as $\dim(\tau) = |\tau|$. The empty set has dimension 0.

A simplicial complex X on the ground set [n] is a nonempty collection of subsets of [n] that is downward closed, namely if $\tau \subset \sigma$ and $\sigma \in X$, then $\tau \in X$.

The elements of X are called **faces**/simplices.

The dimension of a face τ is defined as $\dim(\tau) = |\tau|$. The empty set has dimension 0.

For any $1 \le k \le n$, we define the set of k-faces/k-simplices as,

 $X(k) = \{\tau \in X \mid \dim(\tau) = k\}.$

The dimension of X is the largest k for which X(k) is nonempty.

A simplicial complex X on the ground set [n] is a nonempty collection of subsets of [n] that is downward closed, namely if $\tau \subset \sigma$ and $\sigma \in X$, then $\tau \in X$.

The elements of X are called **faces**/simplices.

The dimension of a face τ is defined as $\dim(\tau) = |\tau|$. The empty set has dimension 0.

For any $1 \le k \le n$, we define the set of k-faces/k-simplices as,

 $X(k) = \{\tau \in X \mid \dim(\tau) = k\}.$

The dimension of X is the largest k for which X(k) is nonempty. We say that X is **pure** of dimension d if all maximal faces of X have dimension d.

Simplicial Complexes: Link of a face

The link of a face $\tau \in X$ denoted by X_{τ} is the simplicial complex on $[n] \setminus \tau$ obtained by taking all faces in X that contain τ and removing τ from them,

 $X_{\tau} = \{ \sigma \setminus \tau \mid \sigma \in X, \sigma \supset \tau \}.$

 $X_{\tau} = \{ \sigma : \sigma \cup \tau \in X \}.$

Simplicial Complexes: Link of a face

The link of a face $\tau \in X$ denoted by X_{τ} is the simplicial complex on $[n] \setminus \tau$ obtained by taking all faces in X that contain τ and removing τ from them,

 $X_{\tau} = \{ \sigma \setminus \tau \mid \sigma \in X, \sigma \supset \tau \}.$

 $X_{\tau} = \{ \sigma : \sigma \cup \tau \in X \}.$

Figure: A simplex on the ground set of 11 vertices. X(1) is the set of all vertices. X(2) is the set of all edges. X(3) is the set of all blue triangles. $X(4) = \cdots = X(11) = \Phi$. Yellow vertex's link is the set of green edges. Source: Wikipedia.

Simplicial Complexes: Weight of a face

A weight function $w : X \to \mathbb{R}_{>0}$, which assigns a positive weight to each face of X, is balanced if for every non-maximal face $\tau \in X$ of dimension k,

$$w(\tau) = \sum_{\sigma \in X(k+1): \sigma \supset \tau} w(\sigma).$$

Simplicial Complexes: Weight of a face

A weight function $w : X \to \mathbb{R}_{>0}$, which assigns a positive weight to each face of X, is balanced if for every non-maximal face $\tau \in X$ of dimension k,

$$w(\tau) = \sum_{\sigma \in X(k+1): \sigma \supset \tau} w(\sigma).$$

For a pure simplicial complex of dimension d, we can define a balanced weight function such that for any $\tau \in X(k)$,

$$w(\tau) = (d-k)! \sum_{\sigma \in X(d): \sigma \supset \tau} w(\sigma),$$

where the weights of the d-faces are arbitrarily assigned.

The 1-skeleton of X is the graph G(X(1), X(2)).

The 1-skeleton of X is the graph G(X(1), X(2)).

Consider the following weight function generated by assigning $w(\sigma) = 1$, for all $\sigma \in X(d)$.

The 1-skeleton of X is the graph G(X(1), X(2)).

Consider the following weight function generated by assigning $w(\sigma) = 1$, for all $\sigma \in X(d)$.

Then, restricting w to X(1) and X(2) determines a weighted graph, where w(v) gives the weighted degree of each $v \in X(1)$.

The 1-skeleton of X is the graph G(X(1), X(2)).

Consider the following weight function generated by assigning $w(\sigma) = 1$, for all $\sigma \in X(d)$.

Then, restricting w to X(1) and X(2) determines a weighted graph, where w(v) gives the weighted degree of each $v \in X(1)$.

We will also use 1-skeleton of link of a face τ , that is the graph $G(X_{\tau}(1), X_{\tau}(2))$. Recall,

 $X_{\tau} = \{ \sigma : \sigma \cup \tau \in X \}.$

Simplicial Complex: Example

For any matroid $M = ([n], \mathcal{I})$ of rank r, the independent sets \mathcal{I} form a pure r-dimensional simplicial complex on [n] called its independence (or matroid) complex.

For any matroid $M = ([n], \mathcal{I})$ of rank r, the independent sets \mathcal{I} form a pure r-dimensional simplicial complex on [n] called its independence (or matroid) complex.

Furthermore, for any $S \in \mathcal{I}$, the link \mathcal{I}_S of the independence complex consists precisely of the independent sets of the contraction M/S.

For any matroid $M = ([n], \mathcal{I})$ of rank r, the independent sets \mathcal{I} form a pure r-dimensional simplicial complex on [n] called its independence (or matroid) complex.

Furthermore, for any $S \in \mathcal{I}$, the link \mathcal{I}_S of the independence complex consists precisely of the independent sets of the contraction M/S.

Example: Consider again the matroid $M = ([4], \{\varphi, \{1\}, \{2\}, \{3\}, \{1,3\}, \{2,3\}\})$. Then, rank([4]) = 2, the bases are $\{1,3\}$ and $\{2,3\}$. 4 is a loop. $\{1,2\}$ is a parallel. For $S = \{3\}$, $M' = M/S = (\{1,2,4\}, \{\varphi, \{1\}, \{2\}\})$ is a contraction.

For any matroid $M = ([n], \mathcal{I})$ of rank r, the independent sets \mathcal{I} form a pure r-dimensional simplicial complex on [n] called its independence (or matroid) complex.

Furthermore, for any $S \in \mathcal{I}$, the link \mathcal{I}_S of the independence complex consists precisely of the independent sets of the contraction M/S.

Example: Consider again the matroid $M = ([4], \{\varphi, \{1\}, \{2\}, \{3\}, \{1,3\}, \{2,3\}\})$. Then, rank([4]) = 2, the bases are $\{1,3\}$ and $\{2,3\}$. 4 is a loop. $\{1,2\}$ is a parallel. For $S = \{3\}$, $M' = M/S = (\{1,2,4\}, \{\varphi, \{1\}, \{2\}\})$ is a contraction.

The corresponding simplicial complex is X such that $X(0) = \{\varphi\}$, $X(1) = \{\{1\}, \{2\}, \{3\}\}, X(2) = \{\{1,3\}, \{2,3\}\}$. This is a pure 2-dimensional simplicial complex. For $\tau = \{3\}$, its link X_{τ} is the simplicial complex with faces $X_{\tau}(0) = \{\varphi\}, X_{\tau}(1) = \{\{1\}, \{2\}\}.$

Outline

Preliminaries

- ► Linear Algebra
- Simplicial Complexes
- Walks on Simplicial Complexes and some known results
- Strongly log-concave polynomials
- Main results of the paper
- Some applications

Define weighted complex (X, w) as a pure *d*-dimensional simiplicial complex with a balanced weight function *w*. Then, in a graph representation,

• Let G_k represent a bipartite graph with X(k) and X(k+1) as the two partitions.

Define weighted complex (X, w) as a pure *d*-dimensional simiplicial complex with a balanced weight function w. Then, in a graph representation,

- Let G_k represent a bipartite graph with X(k) and X(k+1) as the two partitions.
- (τ, σ) forms an edge iff $\tau \subset \sigma$, and its weight is $w(\sigma)$.

Define weighted complex (X, w) as a pure *d*-dimensional simiplicial complex with a balanced weight function *w*. Then, in a graph representation,

- Let G_k represent a bipartite graph with X(k) and X(k+1) as the two partitions.
- (τ, σ) forms an edge iff $\tau \subset \sigma$, and its weight is $w(\sigma)$.
- Now define two simple (weighted) random walks on G_k, one of X(k) called P[∧]_k and the other on X(k + 1) called P[∨]_{k+1}.

• Upper k-walk: A movement from a face τ in X(k) to a higher dimensional face and back to a face τ' in X(k).

• Upper k-walk: A movement from a face τ in X(k) to a higher dimensional face and back to a face τ' in X(k). This is given by the transition matrix,

$$P_k^\wedge(au, au') = egin{cases} rac{1}{k+1} & ext{if } au = au' \ rac{w(au \cup au')}{(k+1)w(au)} & ext{if } au \cup au' \in X(k+1) \ 0 & ext{otherwise} \end{cases}$$

• Upper k-walk: A movement from a face τ in X(k) to a higher dimensional face and back to a face τ' in X(k). This is given by the transition matrix,

$$P_k^\wedge(au, au') = egin{cases} rac{1}{k+1} & ext{if } au = au' \ rac{w(au \cup au')}{(k+1)w(au)} & ext{if } au \cup au' \in X(k+1) \ 0 & ext{otherwise} \end{cases}$$

• Lower k-walk: A movement from a face σ in X(k+1) to a lower dimensional face and back to a face σ' in X(k).

• Upper k-walk: A movement from a face τ in X(k) to a higher dimensional face and back to a face τ' in X(k). This is given by the transition matrix,

$$P_k^\wedge(au, au') = egin{cases} rac{1}{k+1} & ext{if } au = au' \ rac{w(au \cup au')}{(k+1)w(au)} & ext{if } au \cup au' \in X(k+1) \ 0 & ext{otherwise} \end{cases}$$

• Lower k-walk: A movement from a face σ in X(k+1) to a lower dimensional face and back to a face σ' in X(k). This is given by the transition matrix,

$$P_{k+1}^{\vee}(\sigma,\sigma') = \begin{cases} \sum_{\tau \in X(k): \tau \subset \sigma} \frac{w(\sigma)}{(k+1)w(\tau)} & \text{if } \sigma = \sigma' \\ \frac{w(\sigma')}{(k+1)w(\sigma \cap \sigma')} & \text{if } \sigma \cap \sigma' \in X(k) \\ 0 & \text{otherwise} \end{cases}$$

Both the random walks using the transition matrices P_k^{\wedge} and P_{k+1}^{\vee} are reversible w.r.t. w, i.e., for any $\tau, \tau' \in X(k)$,

 $w(\tau)P_{k}^{\wedge}(\tau,\tau') = w(\tau')P_{k}^{\wedge}(\tau',\tau) \qquad \qquad w(\tau)P_{k}^{\vee}(\tau,\tau') = w(\tau')P_{k}^{\vee}(\tau',\tau).$

Both the random walks using the transition matrices P_k^{\wedge} and P_{k+1}^{\vee} are reversible w.r.t. w, i.e., for any $\tau, \tau' \in X(k)$,

 $w(\tau)P_k^{\wedge}(\tau,\tau') = w(\tau')P_k^{\wedge}(\tau',\tau) \qquad \qquad w(\tau)P_k^{\vee}(\tau,\tau') = w(\tau')P_k^{\vee}(\tau',\tau).$

Therefore, upper k-walk and lower (k-1)-walk have the same stationary distribution π_k , such that $\forall \tau \in X(k), \pi_k(\tau) \propto w(\tau)$.

Proof: Let P_k be the transition matrix of a simple random walk on G_k ,

$$P_{k} = \begin{bmatrix} \mathbf{0} & P_{k}^{\downarrow} \\ P_{k}^{\uparrow} & \mathbf{0} \end{bmatrix} \implies P_{k}^{2} = \begin{bmatrix} P_{k}^{\downarrow} P_{k}^{\uparrow} & \mathbf{0} \\ \mathbf{0} & P_{k}^{\uparrow} P_{k}^{\downarrow} \end{bmatrix} \implies P_{k}^{2} = \begin{bmatrix} P_{k+1}^{\vee} & \mathbf{0} \\ \mathbf{0} & P_{k}^{\wedge} \end{bmatrix},$$

where $P_{k}^{\downarrow} \in \mathbb{R}^{X(k+1) \times X(k)}$ and $P_{k}^{\uparrow} \in \mathbb{R}^{X(k) \times X(k+1)}$ are stochastic matrices.

Proof: Let P_k be the transition matrix of a simple random walk on G_k ,

$$P_{k} = \begin{bmatrix} \mathbf{0} & P_{k}^{\downarrow} \\ P_{k}^{\uparrow} & \mathbf{0} \end{bmatrix} \implies P_{k}^{2} = \begin{bmatrix} P_{k}^{\downarrow} P_{k}^{\uparrow} & \mathbf{0} \\ \mathbf{0} & P_{k}^{\uparrow} P_{k}^{\downarrow} \end{bmatrix} \implies P_{k}^{2} = \begin{bmatrix} P_{k+1}^{\vee} & \mathbf{0} \\ \mathbf{0} & P_{k}^{\wedge} \end{bmatrix},$$

where $P_k^{\downarrow} \in \mathbb{R}^{X(k+1) \times X(k)}$ and $P_k^{\uparrow} \in \mathbb{R}^{X(k) \times X(k+1)}$ are stochastic matrices.

Note that P_k is selfadjoint w.r.t. the weight-induced inner product given by weights of the stationary distribution $\pi(\tau) \propto \sum_{\sigma \in X(k+1): \sigma \supset \tau} w(\sigma) = w(\tau)$ and $\pi(\sigma) \propto (k+1)w(\sigma)$. Therefore, P_k is self-adjoint w.r.t. the inner product $\langle \varphi, \psi \rangle = \sum_{\tau \in X(k)} w(\tau)\varphi(\tau)\psi(\tau) + \sum_{\sigma \in X(k+1)} (k+1)w(\sigma)\varphi(\sigma)\psi(\sigma)$.

Proof: Let P_k be the transition matrix of a simple random walk on G_k ,

$$P_{k} = \begin{bmatrix} \mathbf{0} & P_{k}^{\downarrow} \\ P_{k}^{\uparrow} & \mathbf{0} \end{bmatrix} \implies P_{k}^{2} = \begin{bmatrix} P_{k}^{\downarrow} P_{k}^{\uparrow} & \mathbf{0} \\ \mathbf{0} & P_{k}^{\uparrow} P_{k}^{\downarrow} \end{bmatrix} \implies P_{k}^{2} = \begin{bmatrix} P_{k+1}^{\vee} & \mathbf{0} \\ \mathbf{0} & P_{k}^{\wedge} \end{bmatrix},$$

where $P_k^{\downarrow} \in \mathbb{R}^{X(k+1) \times X(k)}$ and $P_k^{\uparrow} \in \mathbb{R}^{X(k) \times X(k+1)}$ are stochastic matrices.

Note that P_k is selfadjoint w.r.t. the weight-induced inner product given by weights of the stationary distribution $\pi(\tau) \propto \sum_{\sigma \in X(k+1): \sigma \supset \tau} w(\sigma) = w(\tau)$ and $\pi(\sigma) \propto (k+1)w(\sigma)$. Therefore, P_k is self-adjoint w.r.t. the inner product $\langle \varphi, \psi \rangle = \sum_{\tau \in X(k)} w(\tau)\varphi(\tau)\psi(\tau) + \sum_{\sigma \in X(k+1)} (k+1)w(\sigma)\varphi(\sigma)\psi(\sigma)$. Also observe that P_k^2 is PSD and stochastic.

Proof: Let P_k be the transition matrix of a simple random walk on G_k ,

$$P_{k} = \begin{bmatrix} \mathbf{0} & P_{k}^{\downarrow} \\ P_{k}^{\uparrow} & \mathbf{0} \end{bmatrix} \implies P_{k}^{2} = \begin{bmatrix} P_{k}^{\downarrow} P_{k}^{\uparrow} & \mathbf{0} \\ \mathbf{0} & P_{k}^{\uparrow} P_{k}^{\downarrow} \end{bmatrix} \implies P_{k}^{2} = \begin{bmatrix} P_{k+1}^{\vee} & \mathbf{0} \\ \mathbf{0} & P_{k}^{\wedge} \end{bmatrix},$$

where $P_k^{\downarrow} \in \mathbb{R}^{X(k+1) \times X(k)}$ and $P_k^{\uparrow} \in \mathbb{R}^{X(k) \times X(k+1)}$ are stochastic matrices.

Note that P_k is selfadjoint w.r.t. the weight-induced inner product given by weights of the stationary distribution $\pi(\tau) \propto \sum_{\sigma \in X(k+1): \sigma \supset \tau} w(\sigma) = w(\tau)$ and $\pi(\sigma) \propto (k+1)w(\sigma)$. Therefore, P_k is self-adjoint w.r.t. the inner product $\langle \varphi, \psi \rangle = \sum_{\tau \in X(k)} w(\tau)\varphi(\tau)\psi(\tau) + \sum_{\sigma \in X(k+1)} (k+1)w(\sigma)\varphi(\sigma)\psi(\sigma)$. Also observe that P_k^2 is PSD and stochastic.

 \therefore Both P_k^{\wedge} and P_{k+1}^{\vee} are self-adjoint w.r.t. the *w*-induced inner product, are PSD, and stochastic, and have the same eigenvalues by the fact that *AB* and *BA* have same nonzero eigenvalues.

 P_1^{\wedge} is the transition probability matrix of the simple $\frac{1}{2}$ -lazy random walk on the weighted 1-skeleton of X. Then the non-lazy transition matrix is,

$$ilde{P}_1^\wedge = 2\left(P_1^\wedge - rac{l}{2}
ight).$$

^vTali Kaufman and Izhar Oppenheim. "High Order Random Walks: Beyond Spectral Gap". In: APPROX/RANDOM. 2018, 47:1–47:17.

 P_1^{\wedge} is the transition probability matrix of the simple $\frac{1}{2}$ -lazy random walk on the weighted 1-skeleton of X. Then the non-lazy transition matrix is,

$$ilde{P}_1^\wedge = 2\left(P_1^\wedge - rac{l}{2}
ight).$$

Similarly, for a face $\tau \in X(k)$, let $\tilde{P}^{\wedge}_{\tau,1}$ represent the transition matrix of the 1-skeleton of the *link* of τ , X_{τ} .

^vTali Kaufman and Izhar Oppenheim. "High Order Random Walks: Beyond Spectral Gap". In: APPROX/RANDOM. 2018, 47:1–47:17.

 P_1^{\wedge} is the transition probability matrix of the simple $\frac{1}{2}$ -lazy random walk on the weighted 1-skeleton of X. Then the non-lazy transition matrix is,

$$ilde{P}_1^\wedge = 2\left(P_1^\wedge - rac{l}{2}
ight).$$

Similarly, for a face $\tau \in X(k)$, let $\tilde{P}^{\wedge}_{\tau,1}$ represent the transition matrix of the 1-skeleton of the *link* of τ , X_{τ} .

Definition (Local Spectral Expanders) [KO18]^V: For $\lambda \ge 0$, a pure *d*-dimensional weighted complex (X, w) is a λ -local-spectral-expander if for every $0 \le k < d - 1$, and for every $\tau \in X(k)$, we have $\lambda_2 \left(\tilde{P}^{\wedge}_{\tau,1} \right) \le \lambda$.

^vTali Kaufman and Izhar Oppenheim. "High Order Random Walks: Beyond Spectral Gap". In: APPROX/RANDOM. 2018, 47:1–47:17.

Consider the w-induced inner product in the following lemma.

Consider the w-induced inner product in the following lemma.

Lemma 2: Let (X, w) be a 0-local-spectral-expander. Thenk, $P_k^{\wedge} \preccurlyeq \frac{k}{k+1} P_k^{\vee} + \frac{1}{k+1} I$, for all $0 \le k < d$.

Consider the w-induced inner product in the following lemma.

Lemma 2: Let (X, w) be a 0-local-spectral-expander. Thenk, $P_k^{\wedge} \preccurlyeq \frac{k}{k+1} P_k^{\vee} + \frac{1}{k+1} I$, for all $0 \le k < d$.

Proof: Let $M = P_k^{\wedge} - \left(\frac{k}{k+1}P_k^{\vee} + \frac{1}{k+1}I\right)$.

Consider the w-induced inner product in the following lemma.

Lemma 2: Let (X, w) be a 0-local-spectral-expander. Thenk, $P_k^{\wedge} \preccurlyeq \frac{k}{k+1} P_k^{\vee} + \frac{1}{k+1} I$, for all $0 \le k < d$.

Proof: Let $M = P_k^{\wedge} - \left(\frac{k}{k+1}P_k^{\vee} + \frac{1}{k+1}I\right)$. Fix $\eta \in X(k-1)$ and define the matrix M_{η} with the entries as,

$$M_\eta(au, \sigma) = egin{cases} M(au, \sigma) & ext{if } au
eq \sigma, au \cap \sigma = \eta \ -rac{1}{k+1} \cdot rac{w(au)}{w(\eta)} & ext{if } au = \sigma, au \supset \eta \ 0 & ext{otherwise} \end{cases}.$$

Note that $M = \sum_{\eta \in X(k-1)} M_{\eta}$. Hence, enough to show $M_{\eta} \preccurlyeq 0, \forall \eta \in X(k-1)$.

Fix $\eta \in X(k-1)$. We can write M_{η} as

$$M_{\eta} = rac{1}{(k+1)w(\eta)} \operatorname{diag}(w_{\eta})^{-1} \cdot \left(w(\eta) \cdot A_{\eta} - w_{\eta}w_{\eta}^{\top}
ight),$$

where w_{η} is the |X(k)|-dimensional vector whose non-zero entries are $w(\tau)$ for $\tau \supset \eta$, and A_{η} is the $|X(k)| \times |X(k)|$ matrix whose non-zero entries are $w(\tau \cup \sigma)$ for $\tau, \sigma \in X(k)$ satisfying $\tau \cup \sigma \in X(k+1)$ and $\tau \cap \sigma = \eta$. Fix $\eta \in X(k-1)$. We can write M_{η} as

$$M_{\eta} = rac{1}{(k+1)w(\eta)} \operatorname{diag}(w_{\eta})^{-1} \cdot \left(w(\eta) \cdot A_{\eta} - w_{\eta}w_{\eta}^{\top}
ight),$$

where w_{η} is the |X(k)|-dimensional vector whose non-zero entries are $w(\tau)$ for $\tau \supset \eta$, and A_{η} is the $|X(k)| \times |X(k)|$ matrix whose non-zero entries are $w(\tau \cup \sigma)$ for $\tau, \sigma \in X(k)$ satisfying $\tau \cup \sigma \in X(k+1)$ and $\tau \cap \sigma = \eta$. We also have,

$$\langle v, \mathcal{M}_\eta v
angle = v^ op$$
 diag $(w_k) \, \mathcal{M}_\eta v = v^ op$ diag $(w_\eta) \, \mathcal{M}_\eta v,$

where w_k is the vector of w values on X(k) and for the last equality we used that w_k is the same as w_η on all $\tau \supset \eta$.

Fix $\eta \in X(k-1)$. We can write M_{η} as

$$M_{\eta} = rac{1}{(k+1)w(\eta)} \operatorname{diag}(w_{\eta})^{-1} \cdot \left(w(\eta) \cdot A_{\eta} - w_{\eta}w_{\eta}^{\top}
ight),$$

where w_{η} is the |X(k)|-dimensional vector whose non-zero entries are $w(\tau)$ for $\tau \supset \eta$, and A_{η} is the $|X(k)| \times |X(k)|$ matrix whose non-zero entries are $w(\tau \cup \sigma)$ for $\tau, \sigma \in X(k)$ satisfying $\tau \cup \sigma \in X(k+1)$ and $\tau \cap \sigma = \eta$. We also have,

$$\langle v, \mathit{M}_\eta v
angle = v^ op$$
 diag $(\mathit{w}_k) \, \mathit{M}_\eta v = v^ op$ diag $(\mathit{w}_\eta) \, \mathit{M}_\eta v,$

where w_k is the vector of w values on X(k) and for the last equality we used that w_k is the same as w_η on all $\tau \supset \eta$.

Therefore, to show that M_{η} is NSD w.r.t. the inner product induced by w, it is enough to show that $\operatorname{diag}(w_{\eta})M_{\eta}$ is NSD in the usual sense, i.e., show that $A_{\eta} \preccurlyeq \frac{w_{\eta}w_{\eta}^{\top}}{w(\eta)}$.

 A_{η} is the weighted adjacency matrix of the 1-skeleton (which we recall is a graph) of the link X_{η} . Then $\tilde{P}_{\eta,1}^{\wedge} = \frac{1}{k+1} \operatorname{diag}(w_{\eta})^{-1} A_{\eta}$ gives its non-lazy simple random walk matrix.

 A_{η} is the weighted adjacency matrix of the 1-skeleton (which we recall is a graph) of the link X_{η} . Then $\tilde{P}_{\eta,1}^{\wedge} = \frac{1}{k+1} \operatorname{diag}(w_{\eta})^{-1} A_{\eta}$ gives its non-lazy simple random walk matrix.

(X, w) is a 0-local spectral expander $\implies \tilde{P}_{\eta,1}^{\wedge}$ has at most one positive eigenvalue, whence $A_{\eta} = (k+1)\text{diag}(w_{\eta}) \cdot \tilde{P}_{\eta,1}^{\wedge}$ has at most one positive eigenvalue by Lemma (If $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with at most one positive eigenvalue. Then, for any PSD matrix $B \in \mathbb{R}^{n \times n}$, BA has at most one positive eigenvalue). A_{η} is the weighted adjacency matrix of the 1-skeleton (which we recall is a graph) of the link X_{η} . Then $\tilde{P}_{\eta,1}^{\wedge} = \frac{1}{k+1} \operatorname{diag}(w_{\eta})^{-1} A_{\eta}$ gives its non-lazy simple random walk matrix.

(X, w) is a 0-local spectral expander $\implies \tilde{P}_{\eta,1}^{\wedge}$ has at most one positive eigenvalue, whence $A_{\eta} = (k+1)\text{diag}(w_{\eta}) \cdot \tilde{P}_{\eta,1}^{\wedge}$ has at most one positive eigenvalue by Lemma (If $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with at most one positive eigenvalue. Then, for any PSD matrix $B \in \mathbb{R}^{n \times n}$, BA has at most one positive eigenvalue).

We know that the weights are balanced. Therefore from Lemma (If $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with nonnegative entries and at most one positive eigenvalue, and $w(i) = \sum_{j=1}^{n} A_{i,j}$. Then, $A \preccurlyeq \frac{ww^{\top}}{\sum_{i} w(i)}$) it follows that $A_{\eta} \preccurlyeq \frac{w_{\eta}w_{\eta}^{\top}}{w(\eta)}$.

Theorem 1 $[KO18]^{\text{vi}}$: Let (X, w) be a pure *d*-dimensional weighted 0-local spectral expander and let $0 \le k < d$. Then, for all $-1 \le i \le k$, P_k^{\wedge} has at most $|X(i)| \le {n \choose i}$ eigenvalues of value $> 1 - \frac{i+1}{k+1}$, where for convenience, we set $X(-1) = \varphi$ and ${n \choose -1} = 0$. In particular, the second largest eigenvalue of P_k^{\wedge} is at most $\frac{k}{k+1}$.

^{vi}Tali Kaufman and Izhar Oppenheim. "High Order Random Walks: Beyond Spectral Gap". In: APPROX/RANDOM. 2018, 47:1–47:17.

Theorem 1 $[KO18]^{\text{vi}}$: Let (X, w) be a pure *d*-dimensional weighted 0-local spectral expander and let $0 \le k < d$. Then, for all $-1 \le i \le k$, P_k^{\wedge} has at most $|X(i)| \le {n \choose i}$ eigenvalues of value $> 1 - \frac{i+1}{k+1}$, where for convenience, we set $X(-1) = \varphi$ and ${n \choose -1} = 0$. In particular, the second largest eigenvalue of P_k^{\wedge} is at most $\frac{k}{k+1}$.

Proof: By induction on *k*.

^{vi}Tali Kaufman and Izhar Oppenheim. "High Order Random Walks: Beyond Spectral Gap". In: APPROX/RANDOM. 2018, 47:1–47:17.

Theorem 1 $[KO18]^{\text{vi}}$: Let (X, w) be a pure *d*-dimensional weighted 0-local spectral expander and let $0 \le k < d$. Then, for all $-1 \le i \le k$, P_k^{\wedge} has at most $|X(i)| \le {n \choose i}$ eigenvalues of value $> 1 - \frac{i+1}{k+1}$, where for convenience, we set $X(-1) = \varphi$ and ${n \choose -1} = 0$. In particular, the second largest eigenvalue of P_k^{\wedge} is at most $\frac{k}{k+1}$.

Proof: By induction on *k*.

Base case: For k = 0, trivial since P_0^{\wedge} is 1×1 .

^{vi}Tali Kaufman and Izhar Oppenheim. "High Order Random Walks: Beyond Spectral Gap". In: APPROX/RANDOM. 2018, 47:1–47:17.

Theorem 1 $[KO18]^{\text{vi}}$: Let (X, w) be a pure *d*-dimensional weighted 0-local spectral expander and let $0 \le k < d$. Then, for all $-1 \le i \le k$, P_k^{\wedge} has at most $|X(i)| \le {n \choose i}$ eigenvalues of value $> 1 - \frac{i+1}{k+1}$, where for convenience, we set $X(-1) = \varphi$ and ${n \choose -1} = 0$. In particular, the second largest eigenvalue of P_k^{\wedge} is at most $\frac{k}{k+1}$.

Proof: By induction on k. Base case: For k = 0, trivial since P_0^{\wedge} is 1×1 . We have $P_1^{\wedge} = \frac{1}{2} \left(\tilde{P}_1^{\wedge} + I \right)$.

^{vi}Tali Kaufman and Izhar Oppenheim. "High Order Random Walks: Beyond Spectral Gap". In: APPROX/RANDOM. 2018, 47:1–47:17.

Theorem 1 $[KO18]^{\text{vi}}$: Let (X, w) be a pure *d*-dimensional weighted 0-local spectral expander and let $0 \le k < d$. Then, for all $-1 \le i \le k$, P_k^{\wedge} has at most $|X(i)| \le {n \choose i}$ eigenvalues of value $> 1 - \frac{i+1}{k+1}$, where for convenience, we set $X(-1) = \varphi$ and ${n \choose -1} = 0$. In particular, the second largest eigenvalue of P_k^{\wedge} is at most $\frac{k}{k+1}$.

Proof: By induction on k. **Base case:** For k = 0, trivial since P_0^{\wedge} is 1×1 . We have $P_1^{\wedge} = \frac{1}{2} \left(\tilde{P}_1^{\wedge} + I \right)$. Given (X, w) is a 0-local spectral expander $\implies 1$ is the only eigenvalue of \tilde{P}_1^{\wedge} . So is the case with P_1^{\wedge} .

^{vi}Tali Kaufman and Izhar Oppenheim. "High Order Random Walks: Beyond Spectral Gap". In: APPROX/RANDOM. 2018, 47:1–47:17.

Theorem 1 $[KO18]^{\text{vi}}$: Let (X, w) be a pure *d*-dimensional weighted 0-local spectral expander and let $0 \le k < d$. Then, for all $-1 \le i \le k$, P_k^{\wedge} has at most $|X(i)| \le {n \choose i}$ eigenvalues of value $> 1 - \frac{i+1}{k+1}$, where for convenience, we set $X(-1) = \varphi$ and ${n \choose -1} = 0$. In particular, the second largest eigenvalue of P_k^{\wedge} is at most $\frac{k}{k+1}$.

Proof: By induction on k. **Base case:** For k = 0, trivial since P_0^{\wedge} is 1×1 . We have $P_1^{\wedge} = \frac{1}{2} \left(\tilde{P}_1^{\wedge} + I \right)$. Given (X, w) is a 0-local spectral expander $\implies 1$ is the only eigenvalue of \tilde{P}_1^{\wedge} . So is the case with P_1^{\wedge} .

Induction step: Assume the claim holds for all $0 \le k < d - 1$. Then,

$$P_{k+1}^{\wedge} \preccurlyeq rac{k+1}{k+2} P_{k+1}^{\vee} + rac{1}{k+2} I$$

... from Lemma 2.

^{vi}Tali Kaufman and Izhar Oppenheim. "High Order Random Walks: Beyond Spectral Gap". In: APPROX/RANDOM. 2018, 47:1–47:17.

... from Lemma 2

... from Lemma 1.

$$P_{k+1}^{\wedge} \preccurlyeq \frac{k+1}{k+2} P_{k+1}^{\vee} + \frac{1}{k+2} I \qquad \dots \text{ from Lemma 2}$$
$$\implies P_{k+1}^{\wedge} \preccurlyeq \frac{k+1}{k+2} P_{k}^{\wedge} + \frac{1}{k+2} I \qquad \dots \text{ from Lemma 1.}$$

For $-1 \le i \le k$, P_k^{\wedge} has at most |X(i)| eigenvalues $> 1 - \frac{i+1}{k+1}$, by the induction hypothesis.

$$P_{k+1}^{\wedge} \preccurlyeq \frac{k+1}{k+2} P_{k+1}^{\vee} + \frac{1}{k+2} I \qquad \dots \text{ from Lemma}$$
$$\implies P_{k+1}^{\wedge} \preccurlyeq \frac{k+1}{k+2} P_{k}^{\wedge} + \frac{1}{k+2} I \qquad \dots \text{ from Lemma}$$

2

1.

For $-1 \le i \le k$, P_k^{\wedge} has at most |X(i)| eigenvalues $> 1 - \frac{i+1}{k+1}$, by the induction hypothesis.

Hence, P_{k+1}^{\wedge} has at most |X(i)| eigenvalues $> \frac{k+1}{k+2}\left(1-\frac{i+1}{k+1}\right)+\frac{1}{k+1}=1-\frac{i+1}{k+2}$.

$$P_{k+1}^{\wedge} \preccurlyeq \frac{k+1}{k+2} P_{k+1}^{\vee} + \frac{1}{k+2} I \qquad \dots \text{ from Lemma 2}$$
$$\implies P_{k+1}^{\wedge} \preccurlyeq \frac{k+1}{k+2} P_{k}^{\wedge} + \frac{1}{k+2} I \qquad \dots \text{ from Lemma 1.}$$

For $-1 \le i \le k$, P_k^{\wedge} has at most |X(i)| eigenvalues $> 1 - \frac{i+1}{k+1}$, by the induction hypothesis.

Hence, P_{k+1}^{\wedge} has at most |X(i)| eigenvalues $> \frac{k+1}{k+2} \left(1 - \frac{i+1}{k+1}\right) + \frac{1}{k+1} = 1 - \frac{i+1}{k+2}$. $P_{k+1}^{\wedge} \in \mathbb{R}^{|X(k+1)| \times |X(k+1)|}$. Therefore, for i = k+1, P_{k+1}^{\wedge} has at most |X(k+1)| eigenvalues > 0.

Outline: Thursday

Preliminaries

- Linear Algebra
- Simplicial Complexes
- Walks on Simplicial Complexes and some known results
- Strongly log-concave polynomials
- Main results of the paper
- Some applications