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A matroid M = ([n],Z) is a combinatorial structure consisting of a ground set [n] of
elements and a nonempty collection 7 of independent subsets of [n] satisfying,

1. Hereditary property: If SC T and T € Z, then S € 7.

2. Exchange axiom: If S, T € 7 and |T| > |S|, then there exists an element
i€ T\S suchthat SU{i} € Z.

Example: For n = 3, consider the following collections of independent sets,
1. 7T ={p,{1},{2},{1,3}} satisfies neither (1) nor (2).
2. T={p,{1},{2},{3},{1,2}} satisfies only (1).
3. Z={p,{1},{2},{1,2},{2,3},{1,3}} satisfies only (2).
4. 7T ={p,{1},{2},{3},{1,2},{2,3},{1, 3} } satisfies both.
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Rank: For a subset S C [n], rank(S) is defined as the size of the maximal
independent set of M contained in S.

Basis: Any independent set of M such that its rank is rank([n]) is a basis of M.
Loop: An element i € [n] is a loop if {i} & Z.
Parallel: Two non-loops 7,/ € [n] are parallel if {/,j} & 7.

Contraction: Let M = ([n],Z) be a matroid and S € Z. Then the contraction
M/S is the matroid with ground set [n] \ S and independent sets
{TC[n\S|TUS eI}
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Example: Consider the matroid M = ([4], {o, {1}, {2},{3}.{1,3},{2,3}}). Then,
rank([4]) = 2, the bases are {1,3} and {2,3}. 4 is a loop. {1,2} is a parallel. For
S={3}, M'=M/S = ({1,2,4},{p,{1},{2}}) is a contraction.
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Problem

» Given a matroid M = ([n|,Z), approximately count the number of bases of M.

We will see the polynomial time randomised approximation algorithm proposed in
“Log-Concave Polynomials Il: High-Dimensional Walks and an FPRAS for
Counting Bases of a Matroid. Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and
Cynthia Vinzant” that appeared in STOC 2019.

» FPRAS to sample a uniform random basis of a matroid => FPRAS to count the
number of bases of a matroid (Since Sampling <> Counting).

> Expansion of the bases exchange graph of a matroid is 1.
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Linear Algebra

A matrix A € R™" is stochastic if all Aj >0and >, Aj = 1,Vi € [n].
Fact: The largest eigenvalue in magnitude of a stochastic matrix is 1.
Cauchy'’s Interlacing Theorem [HJ13]': For a symmetric matrix A € R™*" and vector

v € R”, the eigenvalues of A interlace the eigenvalues of A + w . That is, for
B=A+w',

An(A) < An(B) < An1(A) < - < Xa(B) < Ai(A) < \i(B).

‘Roger A Horn and Charles R Johnson. Matrix analysis. 2nd ed. Cambridge university press, 2013.
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Lemma: Let A€ R" " be a symmetric matrix and let P € R™*"_If A has at most
one positive eigenvalue, then PAP " has at most one positive eigenvalue.

Proof: Given A has at most one positive eigenvalue. Therefore, write A = B + v ' for
some vector v € R” and for some B < 0. Then PAPT = PBPT + Pw ' PT.
Then,

x"PBPTx =(PTx)TB(P"x)<0; V¥xeR™.
Therefore, PBPT < 0.
Let w = Pv € R™. Then Pw'P" = ww'. By the Cauchy interlacing theorem,
o (PBPT + (Pv)(Pv)T> <\ (PBPT) <\ (PBPT + (Pv)(Pv)T) ,

Since all eigenvalues of PBP " are nonpositive, PAP" = PBP" + ww " has at most one
positive eigenvalue.

L]
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Linear Algebra

Fact: Let A€ R"™¥ and B € R**" be arbitrary matrices. Then, non-zero eigenvalues
of AB are equal to non-zero eigenvalues of BA with the same multiplicity.

Lemma: Let A € R"" be a symmetric matrix with at most one positive eigenvalue.
Then, for any PSD matrix B € R"™" | BA has at most one positive eigenvalue.

Proof: Since B = 0, we can write B = C' C for some C € R"*". By the fact above,
BA = C " CA hasthe same nonzero eigenvalues as the matrix CAC . Since A has at
most one positive eigenvalue, by the previous lemma, CAC " has at most one positive
eigenvalue and so does BA.
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Lemma: Let A € R"" be a symmetric matrix with nonnegative entries and at most
one positive eigenvalue, and let w(i) = >°7; A ;. Then,

-

A =——.

22 w(i)

Proof- Let W = diag(w). Then, A = W~Y/2AW /2 has at most one positive
—_—

PAPT
eigenvalue. Observe that the top eigenvector of A is the \/w vector, where

= /w(i), for all i. In particular, Ay/w = \/w. Therefore, \/w is the only

eigenvector of A with positive eigenvalue and we have

PR
SR S Sw)

Multiplying both sides of the inequality on the left and right by W'/2 proves the lemma.




Theorem ((Courant-Fischer Theorem): . Let T : R” — R” be a linear operator that is
self-adjoint with respect to some inner product (-, ) (not necessarily Euclidean). If
Ap < -+ < )\ are the eigenvalues of T, then,

Ak = mL}n max(v, Tv),

where the minimum is taken over all (n — k)-dimensional subspaces ¢/ C R" and the
maximum is taken over all the vectors v € U such that (v,v) = 1.
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Markov Chains
A Markov chain is a triple (2, P, ),
> () denotes the finite state space.
> Pe Rgéﬂ denotes the transition probability matrix.

> 7 € RYZ, denotes the stationary distribution of the chain.

A chain (Q, P, ) is reversible if there is a nonzero nonnegative function f : Q — R~
such that for any pair of states 7,0 € (,

f(r)P(r,0) = f(o)P(o, 7).

Reversible Markov chain can be realized as random walks on weighted graphs
G=(V,E,w),

» From a vertex u, choose a neighbour v with probability proportional w({u, v}).

> Then, m(u) o< w(u) =32, (uv1ee w({u, v}).
> lts an c-lazy random walk when we stay at the vertex with probability e.
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Reversible Markov Chains

If a Markov chain is reversible then,
1. f is propotional to the stationary distribution 7.
2. P is self-adjoint w.r.t. the following (-, -) defined for ¢, 1) € R®:

(0, ) = 37 F)p(x)(x).

xeN

3. the largest eigenvalue of P is 1 (By point 2 and Courant-Fischer Theorem).
4. Let \* = max{|A2|,|A\n|}. Then we have the following bound on mixing time,
Theorem [DS91, Prop 3[': For any ¢ > 0 and any 7 € Q,

t-(e) < 1—A1*(P)'Iog <€'71(T)>.

ipersi Diaconis and Daniel Stroock. “Geometric bounds for eigenvalues of Markov chains”. In: The
Annals of Applied Probability (1991), pp. 36-61.




Cheeger’s Inequality
Definition (Conductance): Conductance of G = (V, E, w) is,

) ZeeE(ss) W(e).

L ~ w(E(S,S
cond(G) = SDénslgvcond(S) = T l(S) > oo 0]

iN. Alon and V. Milman. “Isoperimetric inequalities for graphs, and superconcentrators”. In:
Journal of Combinatorial Theory, Series B 38.1 (Feb. 1985), pp. 73-88.

“N Alon. “Eigenvalues and expanders”. In: Combinatorica 6 (2 Jan. 1986), pp. 83-96. issn:
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Cheeger’s Inequality
Definition (Conductance): Conductance of G = (V, E, w) is,

) ZeeE(sS) W(e).

L ~ w(E(S,S
cond(G) = SOénslgvcond(S) = T l(S) > oo 0]

Theorem (Cheeger’s Inequlity) [AM85", Alo86"]: For any d-regular weighted graph
G=(V,E,w),

"—22(/‘6) < cond(G) < /2(d — a(Ag))-

iN. Alon and V. Milman. “Isoperimetric inequalities for graphs, and superconcentrators”. In:
Journal of Combinatorial Theory, Series B 38.1 (Feb. 1985), pp. 73-88.

“N Alon. “Eigenvalues and expanders”. In: Combinatorica 6 (2 Jan. 1986), pp. 83-96. issn:
0209-9683.
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Simplicial Complexes

A simplicial complex X on the ground set [n] is a nonempty collection of subsets of [n]
that is downward closed, namely if 7 C o and o € X, then 7 € X.

The elements of X are called faces/simplices.
The dimension of a face 7 is defined as dim(7) = |7|. The empty set has dimension 0.
For any 1 < k < n, we define the set of k-faces/k-simplices as,

X(k) ={r € X | dim(1) = k}.

The dimension of X is the largest k for which X (k) is nonempty.
We say that X is pure of dimension d if all maximal faces of X have dimension d.
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Simplicial Complexes: Link of a face
The link of a face 7 € X denoted by X, is the simplicial complex on [n] \ 7 obtained by
taking all faces in X that contain 7 and removing 7 from them,

Xr={o\7|oceX,oD1}

X ={o:0UT € X}.

Figure: A simplex on the ground set of 11 vertices. X (1) is the set of all vertices. X(2) is the
set of all edges. X(3) is the set of all blue triangles. X(4) = --- = X(11) = ®. Yellow vertex's
link is the set of green edges. Source: Wikipedia.
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Simplicial Complexes: Weight of a face

A weight function w : X — R-g, which assigns a positive weight to each face of X, is
balanced if for every non-maximal face 7 € X of dimension k,

wir)= > w(o).
oceX(k+1):0DT

For a pure simplicial complex of dimension d, we can define a balanced weight function
such that for any 7 € X(k),

wr)=(d-K! 3 o)

ceX(d):oDT

where the weights of the d-faces are arbitrarily assigned.
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Simplicial Complexes: 1-skeleton of X

The 1-skeleton of X is the graph G (X(1), X(2)).

Consider the following weight function generated by assigning w(o) = 1, for all
o € X(d).

Then, restricting w to X (1) and X(2) determines a weighted graph, where w(v) gives
the weighted degree of each v € X(1).

We will also use 1-skeleton of link of a face 7, that is the graph G (X;(1), X-(2)).
Recall,

X;={o:0U7T € X}






11,23} {124}

l 1- Skeleton of X,
2) 31 )
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Matroids as Simplicial Complexes

For any matroid M = ([n],Z) of rank r, the independent sets Z form a pure
r-dimensional simplicial complex on [n] called its independence (or matroid) complex.

Furthermore, for any S € 7, the link Zs of the independence complex consists precisely
of the independent sets of the contraction M/S.

Example: Consider again the matroid M = ([4], {¢, {1},{2},{3},{1,3},{2,3}}).
Then, rank([4]) = 2, the bases are {1,3} and {2,3}. 4 is a loop. {1,2} is a parallel.
For S={3}, M'=M/S = ({1,2,4},{¢,{1},{2}}) is a contraction.

The corresponding simplicial complex is X such that X(0) = {¢},
X(1) ={{1},{2},{3}}, X(2) = {{1,3},{2,3}}. This is a pure 2-dimensional
simplicial complex. For 7 = {3}, its link X} is the simplicial complex with faces

XT(O) - {W}vXT(l) - {{1}7 {2}}
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Walks on Simplicial Complexes
Define weighted complex (X, w) as a pure d-dimensional simiplicial complex with a
balanced weight function w. Then, in a graph representation,
> Let Gi represent a bipartite graph with X (k) and X(k + 1) as the two partitions.
» (7,0) forms an edge iff 7 C o, and its weight is w(o).
> Now define two simple (weighted) random walks on Gy, one of X (k) called P}
and the other on X(k 4 1) called P/, ;.

{1,2,3} {1,2,4}

G,

{1,2} {1,3} {2,3} {1,4} {24}

w; =w({1,2,3}) wy =w({1,2,4})
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Walks on Simplicial Complexes

» Upper k-walk: A movement from a face 7 in X(k) to a higher dimensional face
and back to a face 7/ in X(k).This is given by the transition matrix,

ﬁ / if r=1'
PR(r, ™) ={ iy i TUT € X(k+1).
0 otherwise

» Lower k-walk: A movement from a face o in X(k + 1) to a lower dimensional
face and back to a face o’ in X(k).This is given by the transition matrix,

ZTGX(/[{):TCO’ % if o =0
Pia(0,0") = { ) if o N o’ € X(k) -

0 otherwise



{1,2,3} {1,2,4}

Upper 2—walk
wy
Wi

{1,2} {1,3} {2,3} {1,4} {24}

{1,2,3} {1,2,4}

(ST

{1,2} {1,3} {2,3} {1,4} {2,4}



{1,2,3} {1,2,4}

Lower 3—walk

{1,2} {1,3} {2,3} {1,4} {24}

{1,2,4}

{1,2} {1,3} {2,3} {1,4} {2,4}



Walks on Simplicial Complexes

Both the random walks using the transition matrices P, and P,YH are reversible
w.r.t. w, i.e., for any 7, 7" € X(k),

w(T)PL (T, 7') = w(T )P (7, T) w(T)PY (7, 7) = w(r' )P/ (', 7).



Walks on Simplicial Complexes

Both the random walks using the transition matrices P, and PL/H are reversible
w.r.t. w, i.e., for any 7,7 € X(k),

w(T)PL (T, 7') = w(T )P (7, T) w(T)PY (7, 7) = w(r' )P/ (', 7).

Therefore, upper k-walk and lower (k — 1)-walk have the same stationary distribution
Tk, such that V7 € X(k), (1) o< w(T).



Lemma 1: Forany 1< k < d, P,f and P,YH are stochastic, self-adjoint w.r.t. the
w-induced inner product, PSD, and have the same (with multiplicity) non-zero
eigenvalues.
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w-induced inner product, PSD, and have the same (with multiplicity) non-zero
eigenvalues.

Proof: Let Py be the transition matrix of a simple random walk on G,

0 Pﬂ Pg_{PiPZ 0 } Pﬁ_rkvﬂ 0}7

P, = =
. {PZ 0 k 0 PP 0o P

where P,f € RX(k+1)xX(k) apd P,I e RX(K)xX(k+1) are stochastic matrices.



Lemma 1: Forany 1< k < d, PQ and P/Y+1 are stochastic, self-adjoint w.r.t. the
w-induced inner product, PSD, and have the same (with multiplicity) non-zero
eigenvalues.

Proof: Let Py be the transition matrix of a simple random walk on G,

0 P PPl 0 Py 0}
P = k| = Pp=| k K = PZ=| kit :
=l ] = =% el = = Al

where P} € RX(kH1)xX(k) and Pl e RX(K)xX(k+1) are stochastic matrices.
Note that Py is selfadjoint w.r.t. the weight-induced inner product given by weights of the
stationary distribution 7(7) o¢ 3, c x(k+1).05- W(0) = w(7) and 7(0) o (k + 1)w (o).

Therefore, Py is self-adjoint w.r.t. the inner product
(0, 9) = 2 rexy W(T)e(T)Y(T) + X gexrrny (k + Dw(o)p(a)d (o).
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Lemma 1: Forany 1< k < d, P,f and P,YH are stochastic, self-adjoint w.r.t. the
w-induced inner product, PSD, and have the same (with multiplicity) non-zero
eigenvalues.

Proof: Let Py be the transition matrix of a simple random walk on G,

0 P PPl 0 Py O
P = k| = Pp=| k K = PZ=| kit :
=l ] = =% el = = Al

where P,f € RX(k+1)xX(k) apd P,I e RX(K)xX(k+1) are stochastic matrices.

Note that Py is selfadjoint w.r.t. the weight-induced inner product given by weights of the
stationary distribution 7(7) o< 3, c x(k11).05- W(0) = w(7) and 7(0) o< (k + 1)w (o).
Therefore, Py is self-adjoint w.r.t. the inner product

(1) = 51 exti WIDPPIUT) + Sy (k + Dw()p(0)(o).

Also observe that P} is PSD and stochastic.

.. Both P> and P/, are self-adjoint w.r.t. the w-induced inner product, are PSD, and
stochastic, and have the same eigenvalues by the fact that AB and BA have same nonzero
eigenvalues.



Local Spectral Expanders

P{ is the transition probability matrix of the simple %—Iazy random walk on the

weighted 1-skeleton of X. Then the non-lazy transition matrix is,

= /
Pf—z<P1A_2).

YTali Kaufman and Izhar Oppenheim. “High Order Random Walks: Beyond Spectral Gap”. In:
APPROX/RANDOM. 2018, 47:1-47:17.
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P{ is the transition probability matrix of the simple %—Iazy random walk on the

weighted 1-skeleton of X. Then the non-lazy transition matrix is,

= /
Pf—z<P1A_2).

Similarly, for a face 7 € X(k), let ﬁﬁl represent the transition matrix of the 1-skeleton
of the link of 7, X-.
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Local Spectral Expanders

P{ is the transition probability matrix of the simple %—Iazy random walk on the

weighted 1-skeleton of X. Then the non-lazy transition matrix is,

= /
P{\—2<P1A—2>.

Similarly, for a face 7 € X(k), let ,‘BTA,1 represent the transition matrix of the 1-skeleton
of the link of 7, X-.

Definition (Local Spectral Expanders) [KO18): For A > 0, a pure d-dimensional
weighted complex (X, w) is a A-local-spectral-expander if for every 0 < k < d — 1, and

for every 7 € X(k), we have \» (I-f’;\l) <.

YTali Kaufman and Izhar Oppenheim. “High Order Random Walks: Beyond Spectral Gap”. In:
APPROX/RANDOM. 2018, 47:1-47:17.
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Walks on Simplicial Complexes

Consider the w-induced inner product in the following lemma.

Lemma 2: Let (X, w) be a O-local-spectral-expander. Thenk, P/* < kil PY + k+1

0< k <d.

/, for all

Proof: Let M= P} — (g5 PY + 1)



Walks on Simplicial Complexes

Consider the w-induced inner product in the following lemma.

kP\/

< a1 +k+1l for all

Lemma 2: Let (X, w) be a O-local-spectral-expander. Thenk, P/* <
0 < k<d.

Proof: Let M= P} — (g5 PY + 1)
Fix 7 € X(k — 1) and define the matrix M,, with the entries as,

M(7,0) ifr£0,7No=n
M, (7,0) = —k—ilﬁ;g if T=0,7D0n
0 otherwise

Note that M =}, _y(_1) My. Hence, enough to show M, < 0,Vn € X(k — 1).



Fix n € X(k —1). We can write M, as

1

M, = CEe) diag (wy)~

t (W(77) : A’fl - WUWV]T) )

where w, is the | X(k)|-dimensional vector whose non-zero entries are w(7) for 7 O 1),
and A, is the | X (k)| x |X (k)| matrix whose non-zero entries are w(7 U o) for

7,0 € X(k) satisfying TUo € X(k+ 1) and TNo = 1.



Fix n € X(k —1). We can write M, as

1

M, = CEe) diag (wy)~

o (W(n) A, — WUWWT) ,

where w, is the | X(k)|-dimensional vector whose non-zero entries are w(7) for 7 O 1),
and A, is the | X (k)| x |X (k)| matrix whose non-zero entries are w(7 U o) for
7,0 € X(k) satisfying TUo € X(k+ 1) and 7N o = 1. We also have,

(v, Myv) = v diag (wx) M,v = v' diag (w;)) M,v,

where wy is the vector of w values on X (k) and for the last equality we used that wy is
the same as w;, on all 7 O 7).



Fix n € X(k —1). We can write M, as

1 _ -
My = m diag (wy) s (W(W) Ay = WWWWT) 2

where w, is the | X(k)|-dimensional vector whose non-zero entries are w(7) for 7 O 1),
and A, is the | X (k)| x |X (k)| matrix whose non-zero entries are w(7 U o) for
7,0 € X(k) satisfying TUo € X(k+ 1) and 7N o = 1. We also have,

(v, Myv) = v diag (wx) M,v = v' diag (w;)) M,v,

where wy is the vector of w values on X (k) and for the last equality we used that wy is
the same as w;, on all 7 O 7).

Therefore, to show that M, is NSD w.r.t. the inner product induced by w, it is enough
wyw,

to show that diag(w, )M, is NSD in the usual sense, i.e., show that A, < TR




A, is the weighted adjacency matrix of the 1-skeleton (which we recall is a graph) of the

link X,. Then ﬁgﬁl = %Hdiag(w,])*lA,] gives its non-lazy simple random walk matrix.
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link X,. Then 157]/\’1 = %Hdiag(w,,])*lA,] gives its non-lazy simple random walk matrix.

(X, w) is a O-local spectral expander — .57/7\1 has at most one positive eigenvalue,
whence A, = (k + 1)diag(w;) - 15971 has at most one positive eigenvalue by Lemma (If
A € R™" be a symmetric matrix with at most one positive eigenvalue. Then, for any
PSD matrix B € R™" | BA has at most one positive eigenvalue).



A, is the weighted adjacency matrix of the 1-skeleton (which we recall is a graph) of the
link X,. Then Py/’\’1 = %Hdiag(w,,])*lA,] gives its non-lazy simple random walk matrix.

(X, w) is a O-local spectral expander — .57/7\1 has at most one positive eigenvalue,
whence A, = (k + 1)diag(w;) - 15971 has at most one positive eigenvalue by Lemma (If
A € R™" be a symmetric matrix with at most one positive eigenvalue. Then, for any
PSD matrix B € R™" , BA has at most one positive eigenvalue).

We know that the weights are balanced. Therefore from Lemma (If A € R™" be a
symmetric matrix with nonnegative entries and at most one positive eigenvalue, and

w(i) = 21'7:1 Ajj. Then, A< %) it follows that A, <

Wn W"?

w(n)




Local Spectral Expanders

Theorem 1 [KO18]: Let (X, w) be a pure d-dimensional weighted 0-local spectral
expander and let 0 < k < d. Then, for all =1 </ < k, P} has at most |X(/)| < ()

eigenvalues of value > 1 — ,’(ill where for convenience, we set X(—1) = ¢ and
is at most ﬁ

(") = 0. In particular, the second largest eigenvalue of P}

ViTali Kaufman and Izhar Oppenheim. “High Order Random Walks: Beyond Spectral Gap'. In:
APPROX/RANDOM. 2018, 47:1-47:17.
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expander and let 0 < k < d. Then, for all =1 </ < k, P} has at most |X(/)| < ()
eigenvalues of value > 1 — ,’(ill where for convenience, we set X(—1) = ¢ and
(l’l) = 0. In particular, the second largest eigenvalue of P} is at most ﬁ

Proof: By induction on k.
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eigenvalues of value > 1 — ,’(ill where for convenience, we set X(—1) = ¢ and
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Proof: By induction on k.
Base case: For k = 0, trivial since Pj is 1 x 1.
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Local Spectral Expanders
Theorem 1 [KO18]: Let (X, w) be a pure d-dimensional weighted 0-local spectral
expander and let 0 < k < d. Then, for all =1 </ < k, P} has at most |X(/)| < ()
eigenvalues of value > 1 — ,’(ill where for convenience, we set X(—1) = ¢ and
(l’l) = 0. In particular, the second largest eigenvalue of P} is at most ﬁ

Proof: By induction on k.
Base case: For k = 0, trivial since P} is 1 x 1.We have P{' = 1 (FN’lA + I) .Given

(X, w) is a O-local spectral expander = 1 is the only eigenvalue of P]'. So is the
case with Py

Induction step: Assume the claim holds for all 0 < k < d — 1. Then,

N k+1_, 1

k+1<k7_~_2 k+1+m/ ...from LemmaQ.

ViTali Kaufman and Izhar Oppenheim. “High Order Random Walks: Beyond Spectral Gap'. In:
APPROX/RANDOM. 2018, 47:1-47:17.



k+1 1
Pk+1\k—|—2 pam) ml ...from Lemma 2

k+1 1

k+1\k—|—2 k+k—|—2l ...from Lemma 1.



N k+1_, 1
kb1 S G e T T
k+1 1

— —pr L —— |
k+2 T2

/ ...from Lemma 2

= Pp < ...from Lemma 1.

For —1 </ < k, P} has at most |X(/)| eigenvalues > 1 — ,’(fl by the induction
hypothesis.



N k+1_, 1

RIS PEpUCEE + m/ ...from Lemma 2
k+1 1
— P1§+1 < mPQ + m/ ...from Lemma 1.

For —1 </ < k, P} has at most |X(/)| eigenvalues > 1 — ,’(fl by the induction
hypothesis.

A ; k+l (1 _ i+l 1 _ i+1
Hence, P’ has at most |X(i)| eigenvalues > ;=5 (1 k+1) + % = —



W k+1 1
k+1<7k+2 k+1+7k+2
k+1_, 1

— P1§+1 < mpk + m/ ...from Lemma 1.

/ ...from Lemma 2

For —1 </ < k, P} has at most |X(/)| eigenvalues > 1 — ,’(fl by the induction
hypothesis.

A ; k+1 i+1
Hence, P’ has at most |X(i)| eigenvalues > ;=5 ( k+1) - k+1 = ek

P),; € RXUFDIXIXUAD] Therefore, for i = k + 1, P}, ; has at most [X(k + 1)|
eigenvalues > 0.
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