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Matroids

A matroid M = ([n], I) is a combinatorial structure consisting of a ground set [n] of
elements and a nonempty collection I of independent subsets of [n] satisfying,

1. Hereditary property: If S ⊆ T and T ∈ I, then S ∈ I.
2. Exchange axiom: If S ,T ∈ I and |T | > |S |, then there exists an element

i ∈ T \ S such that S ∪ {i} ∈ I.

Example: For n = 3, consider the following collections of independent sets,
1. I = {ϕ, {1}, {2}, {1, 3}} satisfies neither (1) nor (2).
2. I = {ϕ, {1}, {2}, {3}, {1, 2}} satisfies only (1).
3. I = {ϕ, {1}, {2}, {1, 2}, {2, 3}, {1, 3}} satisfies only (2).
4. I = {ϕ, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}} satisfies both.
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Matroids

I Rank: For a subset S ⊂ [n], rank(S) is defined as the size of the maximal
independent set of M contained in S .

I Basis: Any independent set of M such that its rank is rank([n]) is a basis of M.
I Loop: An element i ∈ [n] is a loop if {i} 6∈ I.
I Parallel: Two non-loops i , j ∈ [n] are parallel if {i , j} 6∈ I.
I Contraction: Let M = ([n], I) be a matroid and S ∈ I. Then the contraction

M/S is the matroid with ground set [n] \ S and independent sets
{T ⊆ [n] \ S | T ∪ S ∈ I}.

Example: Consider the matroid M = ([4], {ϕ, {1}, {2}, {3}, {1, 3}, {2, 3}}). Then,
rank([4]) = 2, the bases are {1, 3} and {2, 3}. 4 is a loop. {1, 2} is a parallel. For
S = {3}, M ′ = M/S = ({1, 2, 4}, {ϕ, {1}, {2}}) is a contraction.
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Problem

I Given a matroid M = ([n], I), approximately count the number of bases of M.

We will see the polynomial time randomised approximation algorithm proposed in
“Log-Concave Polynomials II: High-Dimensional Walks and an FPRAS for
Counting Bases of a Matroid. Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and
Cynthia Vinzant” that appeared in STOC 2019.

I FPRAS to sample a uniform random basis of a matroid => FPRAS to count the
number of bases of a matroid (Since Sampling ↔ Counting).

I Expansion of the bases exchange graph of a matroid is 1.
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Linear Algebra

A matrix A ∈ Rn×n is stochastic if all Aij ≥ 0 and
∑

j∈[n] Aij = 1, ∀i ∈ [n].

Fact: The largest eigenvalue in magnitude of a stochastic matrix is 1.

Cauchy’s Interlacing Theorem [HJ13]i: For a symmetric matrix A ∈ Rn×n and vector
v ∈ Rn, the eigenvalues of A interlace the eigenvalues of A + vv>. That is, for
B = A + vv>,

λn(A) ≤ λn(B) ≤ λn−1(A) ≤ · · · ≤ λ2(B) ≤ λ1(A) ≤ λ1(B).

iRoger A Horn and Charles R Johnson. Matrix analysis. 2nd ed. Cambridge university press, 2013.
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Lemma: Let A ∈ Rn×n be a symmetric matrix and let P ∈ Rm×n. If A has at most
one positive eigenvalue, then PAP> has at most one positive eigenvalue.

Proof: Given A has at most one positive eigenvalue. Therefore, write A = B + vv> for
some vector v ∈ Rn and for some B 4 0. Then PAP> = PBP> + Pvv>P>.
Then,

x>PBP>x = (P>x)>B(P>x) ≤ 0; ∀x ∈ Rm.

Therefore, PBP> 4 0.

Let w = Pv ∈ Rm. Then Pvv>P> = ww>. By the Cauchy interlacing theorem,

λ2

(
PBP> + (Pv)(Pv)>

)
≤ λ1

(
PBP>

)
≤ λ1

(
PBP> + (Pv)(Pv)>

)
,

Since all eigenvalues of PBP> are nonpositive, PAP> = PBP>+ww> has at most one
positive eigenvalue.
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Linear Algebra

Fact: Let A ∈ Rn×k and B ∈ Rk×n be arbitrary matrices. Then, non-zero eigenvalues
of AB are equal to non-zero eigenvalues of BA with the same multiplicity.

Lemma: Let A ∈ Rn×n be a symmetric matrix with at most one positive eigenvalue.
Then, for any PSD matrix B ∈ Rn×n , BA has at most one positive eigenvalue.

Proof: Since B < 0, we can write B = C>C for some C ∈ Rn×n. By the fact above,
BA = C>CA hasthe same nonzero eigenvalues as the matrix CAC>. Since A has at
most one positive eigenvalue, by the previous lemma, CAC> has at most one positive
eigenvalue and so does BA.
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Lemma: Let A ∈ Rn×n be a symmetric matrix with nonnegative entries and at most
one positive eigenvalue, and let w(i) =

∑n
j=1 Ai ,j . Then,

A 4
ww>∑
i w(i)

.

Proof: Let W = diag(w). Then, A = W−1/2AW−1/2︸ ︷︷ ︸
PAP>

has at most one positive

eigenvalue. Observe that the top eigenvector of A is the
√
w vector, where√

w(i) =
√

w(i), for all i . In particular, A
√
w =

√
w . Therefore,

√
w is the only

eigenvector of A with positive eigenvalue and we have

A 4

√
w
√
w
>

‖
√
w‖2

4

√
w
√
w
>∑

i w(i)

Multiplying both sides of the inequality on the left and right by W 1/2 proves the lemma.
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Theorem ((Courant-Fischer Theorem): . Let T : Rn → Rn be a linear operator that is
self-adjoint with respect to some inner product 〈·, ·〉 (not necessarily Euclidean). If
λn ≤ · · · ≤ λ1 are the eigenvalues of T , then,

λk = min
U

max
v
〈v ,Tv〉,

where the minimum is taken over all (n − k)-dimensional subspaces U ⊆ Rn and the
maximum is taken over all the vectors v ∈ U such that 〈v , v〉 = 1.



Markov Chains
A Markov chain is a triple (Ω,P, π),
I Ω denotes the finite state space.
I P ∈ RΩ×Ω

≥0 denotes the transition probability matrix.
I π ∈ RΩ

≥0 denotes the stationary distribution of the chain.

A chain (Ω,P, π) is reversible if there is a nonzero nonnegative function f : Ω→ R≥0
such that for any pair of states τ, σ ∈ Ω,

f (τ)P(τ, σ) = f (σ)P(σ, τ).

Reversible Markov chain can be realized as random walks on weighted graphs
G = (V ,E ,w),
I From a vertex u, choose a neighbour v with probability proportional w({u, v}).
I Then, π(u) ∝ w(u) =

∑
v :{u,v}∈E w({u, v}).

I Its an ε-lazy random walk when we stay at the vertex with probability ε.
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such that for any pair of states τ, σ ∈ Ω,

f (τ)P(τ, σ) = f (σ)P(σ, τ).

Reversible Markov chain can be realized as random walks on weighted graphs
G = (V ,E ,w),
I From a vertex u, choose a neighbour v with probability proportional w({u, v}).
I Then, π(u) ∝ w(u) =

∑
v :{u,v}∈E w({u, v}).
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Reversible Markov Chains
If a Markov chain is reversible then,
1. f is propotional to the stationary distribution π.

2. P is self-adjoint w.r.t. the following 〈·, ·〉 defined for ϕ,ψ ∈ RΩ:

〈ϕ,ψ〉 =
∑
x∈Ω

f (x)ϕ(x)ψ(x).

3. the largest eigenvalue of P is 1 (By point 2 and Courant-Fischer Theorem).
4. Let λ∗ = max{|λ2|, |λn|}. Then we have the following bound on mixing time,

Theorem [DS91, Prop 3]ii: For any ε > 0 and any τ ∈ Ω,

tτ (ε) ≤ 1
1− λ∗(P)

· log

(
1

ε · π(τ)

)
.

iiPersi Diaconis and Daniel Stroock. “Geometric bounds for eigenvalues of Markov chains”. In: The
Annals of Applied Probability (1991), pp. 36–61.
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Cheeger’s Inequality

Definition (Conductance): Conductance of G = (V ,E ,w) is,

cond(G ) = min
ϕ(S(V

cond(S) =
w(E (S ,S))

vol(S)
=

∑
e∈E(S ,S) w(e)∑

u∈S w(u)
.

Theorem (Cheeger’s Inequlity) [AM85iii, Alo86iv]: For any d-regular weighted graph
G = (V ,E ,w),

d − λ2(AG )

2
≤ cond(G ) ≤

√
2(d − λ2(AG )).

iiiN. Alon and V. Milman. “Isoperimetric inequalities for graphs, and superconcentrators”. In:
Journal of Combinatorial Theory, Series B 38.1 (Feb. 1985), pp. 73–88.

ivN Alon. “Eigenvalues and expanders”. In: Combinatorica 6 (2 Jan. 1986), pp. 83–96. issn:
0209-9683.
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Simplicial Complexes

A simplicial complex X on the ground set [n] is a nonempty collection of subsets of [n]
that is downward closed, namely if τ ⊂ σ and σ ∈ X , then τ ∈ X .

The elements of X are called faces/simplices.

The dimension of a face τ is defined as dim(τ) = |τ |. The empty set has dimension 0.

For any 1 ≤ k ≤ n, we define the set of k-faces/k-simplices as,

X (k) = {τ ∈ X | dim(τ) = k}.

The dimension of X is the largest k for which X (k) is nonempty.
We say that X is pure of dimension d if all maximal faces of X have dimension d .
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Simplicial Complexes: Link of a face
The link of a face τ ∈ X denoted by Xτ is the simplicial complex on [n] \ τ obtained by
taking all faces in X that contain τ and removing τ from them,

Xτ = {σ \ τ | σ ∈ X , σ ⊃ τ}.

Xτ = {σ : σ ∪ τ ∈ X}.

Figure: A simplex on the ground set of 11 vertices. X (1) is the set of all vertices. X (2) is the
set of all edges. X (3) is the set of all blue triangles. X (4) = · · · = X (11) = Φ. Yellow vertex’s
link is the set of green edges. Source: Wikipedia.
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Simplicial Complexes: Weight of a face

A weight function w : X → R>0, which assigns a positive weight to each face of X , is
balanced if for every non-maximal face τ ∈ X of dimension k ,

w(τ) =
∑

σ∈X (k+1):σ⊃τ

w(σ).

For a pure simplicial complex of dimension d , we can define a balanced weight function
such that for any τ ∈ X (k),

w(τ) = (d − k)!
∑

σ∈X (d):σ⊃τ

w(σ),

where the weights of the d-faces are arbitrarily assigned.
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Simplicial Complexes: 1-skeleton of X

The 1-skeleton of X is the graph G (X (1),X (2)).

Consider the following weight function generated by assigning w(σ) = 1, for all
σ ∈ X (d).

Then, restricting w to X (1) and X (2) determines a weighted graph, where w(v) gives
the weighted degree of each v ∈ X (1).

We will also use 1-skeleton of link of a face τ , that is the graph G (Xτ (1),Xτ (2)).
Recall,

Xτ = {σ : σ ∪ τ ∈ X}.
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Simplicial Complex: Example
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Matroids as Simplicial Complexes

For any matroid M = ([n], I) of rank r , the independent sets I form a pure
r -dimensional simplicial complex on [n] called its independence (or matroid) complex.

Furthermore, for any S ∈ I, the link IS of the independence complex consists precisely
of the independent sets of the contraction M/S .

Example: Consider again the matroid M = ([4], {ϕ, {1}, {2}, {3}, {1, 3}, {2, 3}}).
Then, rank([4]) = 2, the bases are {1, 3} and {2, 3}. 4 is a loop. {1, 2} is a parallel.
For S = {3}, M ′ = M/S = ({1, 2, 4}, {ϕ, {1}, {2}}) is a contraction.

The corresponding simplicial complex is X such that X (0) = {ϕ},
X (1) = {{1}, {2}, {3}}, X (2) = {{1, 3}, {2, 3}}. This is a pure 2-dimensional
simplicial complex. For τ = {3}, its link Xτ is the simplicial complex with faces
Xτ (0) = {ϕ},Xτ (1) = {{1}, {2}}.
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Walks on Simplicial Complexes
Define weighted complex (X ,w) as a pure d-dimensional simiplicial complex with a
balanced weight function w . Then, in a graph representation,
I Let Gk represent a bipartite graph with X (k) and X (k + 1) as the two partitions.

I (τ, σ) forms an edge iff τ ⊂ σ, and its weight is w(σ).
I Now define two simple (weighted) random walks on Gk , one of X (k) called P∧k

and the other on X (k + 1) called P∨k+1.

{1,2} {1,3} {1,4} {2,4}

{1,2,3} {1,2,4}

{2,3}

G2

w1
w1 w1

w2 w2
w2

w1 = w({1,2,3}) w2 = w({1,2,4})
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Walks on Simplicial Complexes

I Upper k-walk: A movement from a face τ in X (k) to a higher dimensional face
and back to a face τ ′ in X (k).

This is given by the transition matrix,

P∧k (τ, τ ′) =


1

k+1 if τ = τ ′

w(τ∪τ ′)
(k+1)w(τ) if τ ∪ τ ′ ∈ X (k + 1)

0 otherwise

.

I Lower k-walk: A movement from a face σ in X (k + 1) to a lower dimensional
face and back to a face σ′ in X (k).This is given by the transition matrix,

P∨k+1(σ, σ′) =


∑

τ∈X (k):τ⊂σ
w(σ)

(k+1)w(τ) if σ = σ′

w(σ′)
(k+1)w(σ∩σ′) if σ ∩ σ′ ∈ X (k)

0 otherwise

.
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Walks on Simplicial Complexes

Both the random walks using the transition matrices P∧k and P∨k+1 are reversible
w.r.t. w , i.e., for any τ, τ ′ ∈ X (k),

w(τ)P∧k (τ, τ ′) = w(τ ′)P∧k (τ ′, τ) w(τ)P∨k (τ, τ ′) = w(τ ′)P∨k (τ ′, τ).

Therefore, upper k-walk and lower (k − 1)-walk have the same stationary distribution
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Lemma 1: For any 1 ≤ k < d , P∧k and P∨k+1 are stochastic, self-adjoint w.r.t. the
w -induced inner product, PSD, and have the same (with multiplicity) non-zero
eigenvalues.

Proof: Let Pk be the transition matrix of a simple random walk on Gk ,

Pk =

[
0 P↓k
P↑k 0

]
=⇒ P2

k =

[
P↓kP

↑
k 0

0 P↑kP
↓
k

]
=⇒ P2

k =

[
P∨k+1 0

0 P∧k

]
,

where P↓k ∈ RX (k+1)×X (k) and P↑k ∈ RX (k)×X (k+1) are stochastic matrices.

Note that Pk is selfadjoint w.r.t. the weight-induced inner product given by weights of the
stationary distribution π(τ) ∝

∑
σ∈X (k+1):σ⊃τ w(σ) = w(τ) and π(σ) ∝ (k + 1)w(σ).

Therefore, Pk is self-adjoint w.r.t. the inner product
〈ϕ,ψ〉 =

∑
τ∈X (k) w(τ)ϕ(τ)ψ(τ) +

∑
σ∈X (k+1)(k + 1)w(σ)ϕ(σ)ψ(σ).

Also observe that P2
k is PSD and stochastic.

∴ Both P∧k and P∨k+1 are self-adjoint w.r.t. the w -induced inner product, are PSD, and
stochastic, and have the same eigenvalues by the fact that AB and BA have same nonzero
eigenvalues.
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Local Spectral Expanders

P∧1 is the transition probability matrix of the simple 1
2 -lazy random walk on the

weighted 1-skeleton of X . Then the non-lazy transition matrix is,

P̃∧1 = 2
(
P∧1 −

I

2

)
.

Similarly, for a face τ ∈ X (k), let P̃∧τ,1 represent the transition matrix of the 1-skeleton
of the link of τ , Xτ .

Definition (Local Spectral Expanders) [KO18]v: For λ ≥ 0, a pure d-dimensional
weighted complex (X ,w) is a λ-local-spectral-expander if for every 0 ≤ k < d − 1, and
for every τ ∈ X (k), we have λ2

(
P̃∧τ,1

)
≤ λ.

vTali Kaufman and Izhar Oppenheim. “High Order Random Walks: Beyond Spectral Gap”. In:
APPROX/RANDOM. 2018, 47:1–47:17.
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Walks on Simplicial Complexes

Consider the w -induced inner product in the following lemma.

Lemma 2: Let (X ,w) be a 0-local-spectral-expander. Thenk, P∧k 4 k
k+1P

∨
k + 1

k+1 I , for all
0 ≤ k < d .

Proof: Let M = P∧k −
(

k
k+1P

∨
k + 1

k+1 I
)
.

Fix η ∈ X (k − 1) and define the matrix Mη with the entries as,

Mη(τ, σ) =


M(τ, σ) if τ 6= σ, τ ∩ σ = η

− 1
k+1 ·

w(τ)
w(η) if τ = σ, τ ⊃ η

0 otherwise
.

Note that M =
∑

η∈X (k−1) Mη. Hence, enough to show Mη 4 0,∀η ∈ X (k − 1).
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Fix η ∈ X (k − 1). We can write Mη as

Mη =
1

(k + 1)w(η)
diag (wη)−1 ·

(
w(η) · Aη − wηw

>
η

)
,

where wη is the |X (k)|-dimensional vector whose non-zero entries are w(τ) for τ ⊃ η,
and Aη is the |X (k)| × |X (k)| matrix whose non-zero entries are w(τ ∪ σ) for
τ, σ ∈ X (k) satisfying τ ∪ σ ∈ X (k + 1) and τ ∩ σ = η.

We also have,

〈v ,Mηv〉 = v> diag (wk)Mηv = v> diag (wη)Mηv ,

where wk is the vector of w values on X (k) and for the last equality we used that wk is
the same as wη on all τ ⊃ η.

Therefore, to show that Mη is NSD w.r.t. the inner product induced by w , it is enough

to show that diag(wη)Mη is NSD in the usual sense, i.e., show that Aη 4
wηw>

η

w(η) .
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Aη is the weighted adjacency matrix of the 1-skeleton (which we recall is a graph) of the
link Xη. Then P̃∧η,1 = 1

k+1diag(wη)−1Aη gives its non-lazy simple random walk matrix.

(X ,w) is a 0-local spectral expander =⇒ P̃∧η,1 has at most one positive eigenvalue,
whence Aη = (k + 1)diag(wη) · P̃∧η,1 has at most one positive eigenvalue by Lemma (If
A ∈ Rn×n be a symmetric matrix with at most one positive eigenvalue. Then, for any
PSD matrix B ∈ Rn×n , BA has at most one positive eigenvalue).

We know that the weights are balanced. Therefore from Lemma (If A ∈ Rn×n be a
symmetric matrix with nonnegative entries and at most one positive eigenvalue, and
w(i) =

∑n
j=1 Ai ,j . Then, A 4 ww>∑

i w(i)) it follows that Aη 4
wηw>

η

w(η) .
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Local Spectral Expanders
Theorem 1 [KO18]vi: Let (X ,w) be a pure d-dimensional weighted 0-local spectral
expander and let 0 ≤ k < d . Then, for all −1 ≤ i ≤ k , P∧k has at most |X (i)| ≤

(n
i

)
eigenvalues of value > 1− i+1

k+1 , where for convenience, we set X (−1) = ϕ and( n
−1

)
= 0. In particular, the second largest eigenvalue of P∧k is at most k

k+1 .

Proof: By induction on k .
Base case: For k = 0, trivial since P∧0 is 1× 1.We have P∧1 = 1

2

(
P̃∧1 + I

)
.Given

(X ,w) is a 0-local spectral expander =⇒ 1 is the only eigenvalue of P̃∧1 . So is the
case with P∧1 .

Induction step: Assume the claim holds for all 0 ≤ k < d − 1. Then,

P∧k+1 4
k + 1
k + 2

P∨k+1 +
1

k + 2
I . . . from Lemma 2.

viTali Kaufman and Izhar Oppenheim. “High Order Random Walks: Beyond Spectral Gap”. In:
APPROX/RANDOM. 2018, 47:1–47:17.
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