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» Results
» A randomised, polynomial time algorithm to sample a uniform random basis of a
matroid = FPRAS to count the number of bases of a matroid (Since Sampling

< Counting).
» Expansion of the bases exchange graph of a matroid is 1.

» Simplicial Complexes
> A simplicial complex X on the ground set [n] is a nonempty collection of subsets of
[n] that is downward closed. The elements of X are called faces/simplices. For any
1 < k < n, we define the set of k-faces as,

X(k) = {r € X | dim(r) = k}.

> We defined a weighted simplicial complex (X, w) and a balanced weight function w.
» For any 1 < k < d, where d is the dimension of X, we saw the walks PkA and Pl\(/+1'
They are PSD and have the same non-zero eigenvalues.
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Recall

> Simplicial Complexes
» Link of aface 7 € X(k): X; ={oc\7|o€ X,0 D7}
> 1-skeleton of X: G(X(1),X(2)).

» Local Spectral Expanders
> Non-lazy walk on the 1-skeleton: P =2 (P} — 1).
» Non-lazy walk on the 1-skeleton of a link X.: ISTAl
» Definition (Local Spectral Expanders) [KO18]': For A > 0, a pure d-dimensional
weighted complex (X, w) is a A-local-spectral-expander if for every 0 < k < d — 1,

and for every 7 € X(k), we have A\, (/57A1> <\

"Tali Kaufman and Izhar Oppenheim. “High Order Random Walks: Beyond Spectral Gap”. In:
APPROX/RANDOM. 2018, 47:1-47:17.



Recall

Theorem 1 [KO18]ii: Let (X, w) be a pure d-dimensional weighted 0-local spectral
expander and let 0 < k < d. Then, for all =1 </ < k, P} has at most |X(i)| < (1)

eigenvalues of value > 1 — ,’(%11 where for convenience, we set X(—1) = ¢ and

( "1) = 0. In particular, the second largest eigenvalue of P} is at most kLH

iTali Kaufman and Izhar Oppenheim. “High Order Random Walks: Beyond Spectral Gap”. In:
APPROX/RANDOM. 2018, 47:1-47:17.
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a subset K C RZ, if log p is a concave function at any point in K. Or
equivalently, its hessian V? log p is negative semi-definite on K.

» pis strongly log-concave on K if for any k > 0, and any sequence of integers
1<i,...,ik<n,
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is log-concave on K.

» For proving the results, we'll only need strong log-concavity at K = {1}.
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(Strongly) log-concave polynomials
Lemma [AOV18]: If a d-homogeneous polynomial p € R[xi, ..., x,| with non-negative
coefficients is log-concave over K C R> 0", then (V2p) (x) has at most one positive
eigenvalue at all x € K. The 0 polynomial is also considered to be log-concave.

Proof: As p is log-concave on K, Vx € K,

p- (V2p) = (Vp)(Vp)'
P2

As p?(x) > 0 for any x € K, p- (V3p) — (Vp) (Vp)" < 0. Now, this is a symmetric

matrix and (Vp) (Vp) ' is a rank 1 matrix.

V2logp = < 0.

Cauchy'’s Interlacing Theorem: For a symmetric matrix A € R™" and vector v € R”",
the eigenvalues of A interlace the eigenvalues of A + w'. Thatis, for B=A+ w',

An(A) € An(B) < An_1(A) < -+ < Ao(B) < M (A) < Mi(B).

Hence, p- (V?p) has at most one positive eigenvalue.



(Strongly) log-concave polynomials

Hence, p - (Vzp) has at most one positive eigenvalue.

As, p has non-negative coefficients and K C RZ;, p(x) > 0 Vx € K. Thus, V2p has at
most one positive eigenvalue at any x € K.

0J
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Strongly log-concave distributions

Let p : 2l — RZ be a probability distribution on the subsets of the set [n]. Then,
gu(x)= > wS) ]
sCln] i€s

is called the generating polynomial of yi.

If g, is d-homogeneous, then we say /. is d-homogeneous; i.e.,
supp(u) = {S € [n] : |S| = d}.
If g, is strongly log-concave on {1}, then we say s is strongly log-concave at 1.
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Markov Chain corresponding to p

Define a Markov chain M, as follows:
» State space of M, is the support of .

» Transition probabilities: for 7 € supp(s), drop an element i € 7, chosen uniformly
at random.Then among all sets & O 7\ {/} in the support of ;1 choose one with
probability proportional to 1 (o).

M,, is reversible with stationary distribution /.

Goal:  To show that M, mixes rapidly.



vVvyYvyVvyy

QOutline

Preliminaries

» Linear Algebra
» Simplicial Complexes

Walks on Simplicial Complexes and some known results
Recap

Strongly log-concave polynomials and distributions
Main Result

Secondary Results



Main Result

Theorem: Let 11 : 21"l — R~ be a d-homogeneous strongly log-concave probability
distribution (at 1). If P, denotes the transition probability matrix of M, and X(k)
denotes the collection of size-k subsets of [n| which are contained in some element of
supp(p), then for every 0 < k < d — 1, P, has at most |X(k)| < (}) eigenvalues of
K41 In particular, M, has spectral gap at least %, and if 7 is in the

value > 1 — “=.
support of 12 and 0 < € < 1, the total variation mixing time of the Markov chain M,

started at 7 is at most

t(c) < dlog (Mt)) |



Main Result

Theorem: Let 11 : 21"l — R~ be a d-homogeneous strongly log-concave probability
distribution (at 1). If P, denotes the transition probability matrix of M, and X(k)
denotes the collection of size-k subsets of [n| which are contained in some element of
supp(p), then for every 0 < k < d — 1, P, has at most |X(k)| < (}) eigenvalues of
K41 In particular, M, has spectral gap at least %, and if 7 is in the

value > 1 — “=.
support of 12 and 0 < € < 1, the total variation mixing time of the Markov chain M,

started at 7 is at most

t(c) < dlog (Mt)) |

From now on, by strongly log-concave, we will mean strongly log-concave at {1}.
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Proof ldea

As /1 is d-homogeneous and strongly log-concave, g, is multiaffine,
d-homogeneous and strongly-log concave polynomial.

From any multiaffine, d-homogeneous and strongly log concave polynomial p with
non-negative coefficients, create a pure, d-dimensional, weighted simplicial
complex (XP, w).

Show that the strong log-concavity of p implies that this simplicial complex is a
0-local spectral expander.

We have already shown that, for a pure, d-dimensional, weighted 0-local spectral
expander, for all 0 < k < d the second largest eigenvalue of P} is at most kLH
Use this to argue that the second largest eigenvalue of P} is at most 1 — %.

Observe that P} is exactly the same as P,,.
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Strongly log-concave polynomials to Local Spectral Expanders

Let p= > ccsx® € R[xy,...,x,] be a multiaffine, d-homogeneous, strongly
log-concave polynomial with non-negative coefficients, where x> = [Lics xi-

The pure d-dimensional, weighted simplicial complex (X”, w) is defined as follows:
» The maximal faces are all S C [n] s.t. the coefficient of x° in p is non-zero.

Downward close this set to obtain a simplicial complex.

» Forall S € XP(d), w(S) =cs. Ford —1> k > 1 and 7 € X(k), recursively
define w(7) = >, e x(kt1):05r W(O).

We want to show that (XP, w) is a 0-local spectral expander. Notice that, as p has
non-negative coefficients, the weights of all faces in (XP, w) are non-negative.
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Strongly log-concave polynomials to Local Spectral Expanders
Fix a simplex 7 € XP(k). Let p. = (I[;., 0i) p. Note that p; is (d — k)-homogeneous.

Lemma 3: For any 0 < k < d, and any simplex 7 € XP(k),w(7) = (d — k)! - p- (1).

Proof: By induction on d — k.
Base case: |If dim(7) = d, then as p is multiaffine, p, = c,. Hence, true by definition of w.

Induction step: Suppose the statement holds for all simplices o € XP(k + 1) and fix a simplex
7 € XP(k). Then by definition,

wir)= S w@) B @d-k-11 Y p@)=@-k-1! Y pui(1)

oceXP(k+1): oceXP(k+1): ieX?(1)
oOT ooT

D (g k= 1Y 04 (1) D (0 - (1),

(A): Induction hypothesis. (B) As 9ipr =0, for i ¢ XP(1),
(C): Euler's identity: For a d-homogeneous polynomial p, d - p(x) = >/, xk0kp(x). O
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Strongly log-concave polynomials to Local Spectral Expanders

Proposition 1: Let p € R[xq, ..., x,] be a multiaffine, d-homogeneous polynomial,
strongly log-concave polynomial with non-negative coefficients. Then (XP, w) is a
0-local-spectral-expander.

Proof: Recall that, ﬁﬁl is the transition probability matrix of the non-lazy random

walk on the link XF. We need to show that )\» (Isﬁl) < 0 forall 7 € X. Fix a 7. Since

p is strongly log-concave, p, is log-concave. Hence, V2p, (1) has at most one positive
eigenvalue. Let

. — diag (Vp-(1)) ™ V2pr(1).

2 .
VpT—id_k



1
2 o H —1 2
Vopr = o —diag (Ve (1)) Vopr(1).

(9i9;p7) (1)
(d —k—1)-(9ipr) (1)

= (V?p;) (i,j) =

(d— k= 2)1(:9;p,) (1)
(d—k—1)- (9ip) (D)

_w(rU{ig))
w (T U (i})

(from Lemma 3)

— Wl B (i, 1)
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Vip, = diag (Vp,(1)) " V2p-(1) = P)y.

I
d—k—1
Since p has non-negative coefficients, Vp,(1) has non-negative entries
= diag (Vp;(1)) = 0.

Fact: Let A € R™" be a symmetric matrix with at most one positive eigenvalue.
Then, for any PSD matrix B € R"*" BA has at most one positive eigenvalue.

Since V?p, (1) has at most one positive eigenvalue, V2p, has at most one positive

eigenvalue. Therefore, 5?1 has at most one positive eigenvalue and A, (ﬁﬁl) <0.

]
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Proof of the main result: The chain M,, is exactly the same as the chain P for the
simplicial complex X&:. Therefore, A\ (P,) = A2 (P)) = X2 (P9—1)v (. Py and P}
have the same non-zero eigenvalues). Moreover, P} is PSD. So, \* (P,) = A2 (P)_;).

Since g, is strongly log-concave, by Proposition 1, X&¢ is O-local-spectral-expander.
Therefore by Theorem 1,

A (Pay) S1-——7=1-75

Fact: For any reversible, irreducible Markov chain (€2, P, 7). e > 0, and any starting

state 7 € Q, t; (¢) < #*(P) - log (ﬁ)

Thus, for M,,, t-(e) < d-log (e-/tl(T)>'
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Corollary of the main result: Sampling and counting bases of matroids

Let M = ([n],Z) be an arbitrary matroid on n elements of rank r.

Let 11 be the uniform distribution on the bases of the matroid M. It follows that 1 is
r-homogeneous.

Then, 1 is strongly log-concave [AHK18', AOV18"]. This implies that the chain M,
converges rapidly to stationary distribution. This gives the first polynomial time
algorithm to generate a uniformly random base of a matroid.

Note that to run M, we only need an oracle to test whether a given set S C [n] is an
independent set of M. Therefore, with only polynomially many queries (in n, r, log %)
we can generate a random base of M.

"Karim Adiprasito, June Huh, and Eric Katz. “Hodge theory for combinatorial geometries”. In: Annals of Mathematics.
" Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. “Log-concave polynomials, entropy, and a deterministic approximation

algorithm for counting bases of matroids”. In: FOCS 2018.



Corollary of the main result: Sampling and counting bases of matroids

Corollary: For any matroid M = ([n],Z) of rank r, any basis B of M and 0 < ¢ < 1,
the mixing time of the Markov chain M, starting at B is at most

ta(€) < rlog (' /c) < r*log (n/c).

Proof: tg(e) < r-log(1/(e-u(B))). A matroid of rank r on n elements has at most
(") < n" bases. Thus, (B) < n". 0

VMark Jerrum, Leslie Valiant, and Vijay Vazirani. “Random Generation of Combinatorial Structures from a Uniform Distribution”.

In: Theoretical Computer Science 43 (1986), pp. 169-188.
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the mixing time of the Markov chain M, starting at B is at most

ta(€) < rlog (' /c) < r*log (n/c).

Proof: tg(e) < r-log(1/(e-u(B))). A matroid of rank r on n elements has at most
(") < n" bases. Thus, (B) < n". 0
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problems [JVV86"] we have the following,
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Corollary of the main result: Sampling and counting bases of matroids

Corollary: For any matroid M = ([n],Z) of rank r, any basis B of M and 0 < ¢ < 1,
the mixing time of the Markov chain M, starting at B is at most

ta(€) < rlog (' /c) < r*log (n/c).

Proof: tg(e) < r-log(1/(e-u(B))). A matroid of rank r on n elements has at most
(") < n" bases. Thus, (B) < n". 0

By equivalence of approximate counting and approximate sampling for self-reducible
problems [JVV86"] we have the following,

Corollary:  There is a randomized algorithm that for any matroid M on n elements with
rank r given by an independent set oracle, and any 0 < ¢ < 1, counts the number of
bases of M up to a multiplicative factor of 1 + ¢ with probability at least 1 — § in time
polynomial in n, r,1/e log(1/0).

VMark Jerrum, Leslie Valiant, and Vijay Vazirani. “Random Generation of Combinatorial Structures from a Uniform Distribution”.

In: Theoretical Computer Science 43 (1986), pp. 169-188.



QOutline

Preliminaries

» Linear Algebra
» Simplicial Complexes

Walks on Simplicial Complexes and some known results
Recap

Strongly log-concave polynomials and distributions
Main Result

Secondary Results



Bases Exchange Graph

The bases exchange graph of a matroid M, denoted by Gy, is a graph that has a vertex
for every basis of M and two bases B, B’ are connected by an edge if |BAB’| = 2.
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Bases Exchange Graph

The bases exchange graph of a matroid M, denoted by Gy, is a graph that has a vertex
for every basis of M and two bases B, B’ are connected by an edge if |BAB’| = 2.

The exchange axiom implies that this graph is connected.

Mihail and Vazirani [MV86"/] conjectured that the bases exchange graph has expansion
at least 1.

M. Mihail and U. Vazirani. “On the expansion of 0/1 polytopes”. In: Journal of Combi-
natorial Theory. B (1989).

V'M. Mihail and U. Vazirani. “On the expansion of 0/1 polytopes”. In: Journal of Combinatorial Theory. B (1989).
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Proving the conjecture

Fix a rank r matroid M = ([n|,Z), let 1z denote the uniform distribution on the bases of
M, and consider the simplicial complex X&x.

P, is the transition matrix for the Markov chain M,,. From Theorem 2,
Ao(Py) <1-—1.

As M, is a reversible Markov chain, we can represent it as a weighted undirected graph
H.

» The vertices of Hj, correspond to bases of M.

» The weight of an edge between two bases 7, 7" is, P, (7, 7") = P,(7', 7),
i.e. the (weighted) adjacency matrix of Hy is P,.



Thus, by Cheeger’s inequality,

cond (Hy) >

Bases Exchange Walk

r

1—>\2(PM)>1—(1—1

2 - 2



Bases Exchange Walk
Thus, by Cheeger’s inequality,

1-X(P) _1-(1-13) 1
> > r- — —.
cond (Hy) > > > 5 5

Note that G is the unweighted base graph of H)y.



Bases Exchange Walk
Thus, by Cheeger’s inequality,

_ 1—(1-1
cond (Hy) > 1= o (Pu) > (L-+) — i
2 2 2r

Note that G is the unweighted base graph of H)y.

For any non-empty set S C 3 such that |S| < [B|/2. As P, is a stochastic matrix,
vol(S) = |S].

Yresrgs Pu(m) W) Yocs s 2, 2|E(S,S)|  h(S)

cond (Hy) < cond (S) = < = = _
5] S S| 2r
(A) If PH(T’ T/) # 0, then ‘T mT/‘ =r—1. PN(T7 7'/) = % o m S %



A characterisation of strongly-log concave polynomials

Definition: A polynomial p € R[xi, ..., x,| is said to be decomposable if there exists a
nonempty subset / C [n] and nonzero polynomials g € R[x; : i € /], h € R[x; : i & [] for
which = g + h. Otherwise, f is indecomposable.



A characterisation of strongly-log concave polynomials

Definition: A polynomial p € R[xi, ..., x,| is said to be decomposable if there exists a
nonempty subset / C [n] and nonzero polynomials g € R[x; : i € I], h € R[x; : i & [] for
which = g + h. Otherwise, f is indecomposable.

Theorem: Let p € R[xq,...,x,| be a d-homogeneous polynomial such that:
1. forany 0 < k < d —2 and any (i, ..., ix) € [n]X, O, - - i, p is indecomposable,
and
2. forany (i1, ...,iq_2) € [n]? 2, the quadratic 0;, ...0;, ,p is either identically zero,
or log-concave at 1.

Then p is strongly log-concave at 1.



A characterisation of strongly-log concave polynomials

Fact: [AOV18i| A degree-d homogeneous polynomial p € R[x, ..., x,] with
non-negative coefficients is log-concave over R”, iff (V?p)(x) has at most one positive
eigenvalue at all x € RZ .

Y"Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. “Log-concave polynomials, entropy, and a deterministic approximation
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Fact: [AOV18i| A degree-d homogeneous polynomial p € R[x, ..., x,] with
non-negative coefficients is log-concave over R”, iff (V?p)(x) has at most one positive

a n
eigenvalue at all x € RZ .

Proof: By induction on the degree of p. If the degree of p is at most 2, then 2 implies
that p is log-concave at 1.

Y"Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. “Log-concave polynomials, entropy, and a deterministic approximation

algorithm for counting bases of matroids”. In: FOCS 2018.



A characterisation of strongly-log concave polynomials

Fact: [AOV18i| A degree-d homogeneous polynomial p € R[x, ..., x,] with
non-negative coefficients is log-concave over R”, iff (V?p)(x) has at most one positive
eigenvalue at all x € RZ .

Proof: By induction on the degree of p. If the degree of p is at most 2, then 2 implies
that p is log-concave at 1. Let g be a non-zero first or second order derivative of p.
Then,

.
T2logq = 1 (V9) —ngq) (Va)' _ —(V<JC)I2(V<7)T 6

Hence, all derivatives of p are also log-concave; so the theorem is true.

Y""Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. “Log-concave polynomials, entropy, and a deterministic approximation

algorithm for counting bases of matroids”. In: FOCS 2018.
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A characterisation of strongly-log concave polynomials

Induction Step: d > 3. Let p; := 0;p. From induction hypothesis, all p; are strongly
log-concave.

Define the normalised Hessian V2p = A diag(Vp(1))"*V2p(1). Can be shown to be
stochastic.

We'll use the following inner product: (p,¢), = (d —1)>°7; ©(j)¥(j)(9;p(1)). This

gives H(,on, = (p,¢),. Can be shown that (V?p) is self-adjoint w.r.t. this inner product.

(o (901 = (. 920(0)8) © 130, 9%00(00) = =5 >0 Poutly, (9
/ ’ , d=2 =27 a

(A): From Euler's identity.
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A characterisation of strongly-log concave polynomials

Strategy: Let 1 be an eigenvalue of V2p with eigenvector . Prove that < 2.
@ < p

This suffices: V2p is stochastic = ;< 1. So, =1 or ;1 < 0. So, to prove that
V2p has (exactly) one positive eigenvalue, it is enough to show that \>(V?p) < 1.

View V?p(1) as adjacency matrix of a weighted undirected graph with weights 9;0;p
and V?p as the normglised adjacency matrix. As p is indecomposable, the
corresponding graph V2p is connected, so A\2(V2p) <1 = X\(V?p) < 0.



A characterisation of strongly-log concave polynomials

To prove: 1 < ;2. Will show ngHi < p? Hgole,



A characterisation of strongly-log concave polynomials

To prove: 1 < ;2. Will show ngHi < p? Hgole,

~ from (*) & ~
pllels = (o, po)p = (0, (V2p)o)p = 45 Sopeq b (V2pi) o),



A characterisation of strongly-log concave polynomials

To prove: 1 < ;2. Will show ngHi < p? Hcpr,

~ from (*) n ~
M ”30“;23 - <()07 MSD>P - <907 (v2p)gp>P - ﬁ Zkzl <<)0a (v2pk)<19>[3k

<9071>Pk

Let p = goﬁl + @i, where <,9i1 is the component orthogonal to 1 and goi = 1D,
Y k

parallel to 1.




A characterisation of strongly-log concave polynomials

o 2 2
To prove: < pi?. Will show 1[0l < ® o]

~ from (*) n ~
pllels = (o, po)p = (0, (V2p)o)p = 45 Sopeq b (V2pi) o),

Let p = apil + cpi, where gaﬁl is the component orthogonal to 1 and goi = if;;:k 1
1 Pk
parallel to 1.

From the induction hypothesis, py is strongly log-concave. Hence, V?p, (1) and
therefore, V?p) have at most one positive eigenvalue. So, <g0i1, (Vzpk)cpilh,k <0.



A characterisation of strongly-log concave polynomials

To prove: 1 < ;2. Will show ngHi < p? ngHf,

~ from (*) n ~
pllels = (o, po)p = (0, (V2p)o)p = 45 Sopeq b (V2pi) o),

Let ¢ = o3t + ¢}, where /! is the component orthogonal to 1 and ¢} = %f:;:k
) k

parallel to 1.

From the induction hypothesis, py is strongly log-concave. Hence, V?p, (1) and
therefore, V?p) have at most one positive eigenvalue. So, <g0i1, (Vzpk)cpi”pk <0.

Thus,

1

2 1 (2 1, _ 1 1\ _
MHSDHP < d—2 (@i (VPK)Pi)pe = d—2 Z<90k>90k>pk T d_2 1,1
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2 (p,1)3
pllells < 755 Ykt T

©,1)
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A characterisation of strongly-log concave polynomials

5 (p,1)2
pllell < gt ke Tl

Now

n

(1,1)p, = (d =2) ) (3ipu(1)) = (d —2)(d — 1) - pi(1)

i=1

and
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A characterisation of strongly-log concave polynomials
(1,1)p, = (d = 2)(d = 1) p(1) and (g, 1)p, = (d —2) - ((V?p(1))¢) (k).

This gives,

(0, V)p _ L (V2p(1))0)(K) = (2p) o) (K) = st - (k).

<171>Pk (d_ 1) " Pk

Finally,

1 n <907 1)2 /,L n
plells < 5= 2= = > ek, 1),

O



