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Recall
I Results

I A randomised, polynomial time algorithm to sample a uniform random basis of a
matroid =⇒ FPRAS to count the number of bases of a matroid (Since Sampling
↔ Counting).

I Expansion of the bases exchange graph of a matroid is 1.

I Simplicial Complexes
I A simplicial complex X on the ground set [n] is a nonempty collection of subsets of

[n] that is downward closed. The elements of X are called faces/simplices. For any
1 ≤ k ≤ n, we define the set of k-faces as,

X (k) = {τ ∈ X | dim(τ) = k}.

I We defined a weighted simplicial complex (X ,w) and a balanced weight function w .
I For any 1 ≤ k < d , where d is the dimension of X , we saw the walks P∧k and P∨k+1.

They are PSD and have the same non-zero eigenvalues.
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Recall

I Simplicial Complexes
I Link of a face τ ∈ X (k): Xτ = {σ \ τ | σ ∈ X , σ ⊃ τ}.

I 1-skeleton of X : G (X (1),X (2)).

I Local Spectral Expanders
I Non-lazy walk on the 1-skeleton: P̃∧1 = 2

(
P∧1 − I

2

)
.

I Non-lazy walk on the 1-skeleton of a link Xτ : P̃∧τ,1.
I Definition (Local Spectral Expanders) [KO18]i: For λ ≥ 0, a pure d-dimensional

weighted complex (X ,w) is a λ-local-spectral-expander if for every 0 ≤ k < d − 1,
and for every τ ∈ X (k), we have λ2

(
P̃∧τ,1

)
≤ λ.

iTali Kaufman and Izhar Oppenheim. “High Order Random Walks: Beyond Spectral Gap”. In:
APPROX/RANDOM. 2018, 47:1–47:17.
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Recall

Theorem 1 [KO18]ii: Let (X ,w) be a pure d-dimensional weighted 0-local spectral
expander and let 0 ≤ k < d . Then, for all −1 ≤ i ≤ k , P∧k has at most |X (i)| ≤

(n
i

)
eigenvalues of value > 1− i+1

k+1 , where for convenience, we set X (−1) = ϕ and( n
−1

)
= 0. In particular, the second largest eigenvalue of P∧k is at most k

k+1 .

iiTali Kaufman and Izhar Oppenheim. “High Order Random Walks: Beyond Spectral Gap”. In:
APPROX/RANDOM. 2018, 47:1–47:17.
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(Strongly) log-concave polynomials

I A polynomial p ∈ R[x1, x2, . . . , xn] with non-negative coefficients is log-concave on
a subset K ⊆ Rn

≥0 if log p is a concave function at any point in K .

Or
equivalently, its hessian ∇2 log p is negative semi-definite on K .

I p is strongly log-concave on K if for any k ≥ 0, and any sequence of integers
1 ≤ i1, . . . , ik ≤ n,

(∂i1 . . . ∂ikp) (x1, . . . , xn)

is log-concave on K .

I For proving the results, we’ll only need strong log-concavity at K = {1}.
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(Strongly) log-concave polynomials
Lemma [AOV18]: If a d-homogeneous polynomial p ∈ R[x1, . . . , xn] with non-negative
coefficients is log-concave over K ⊆ R> 0n, then

(
∇2p

)
(x) has at most one positive

eigenvalue at all x ∈ K . The 0 polynomial is also considered to be log-concave.

Proof: As p is log-concave on K , ∀x ∈ K ,

∇2 log p =
p ·
(
∇2p

)
− (∇p) (∇p)>

p2 4 0.

As p2(x) ≥ 0 for any x ∈ K , p ·
(
∇2p

)
− (∇p) (∇p)> 4 0. Now, this is a symmetric

matrix and (∇p) (∇p)> is a rank 1 matrix.

Cauchy’s Interlacing Theorem: For a symmetric matrix A ∈ Rn×n and vector v ∈ Rn,
the eigenvalues of A interlace the eigenvalues of A + vv>. That is, for B = A + vv>,

λn(A) ≤ λn(B) ≤ λn−1(A) ≤ · · · ≤ λ2(B) ≤ λ1(A) ≤ λ1(B).

Hence, p ·
(
∇2p

)
has at most one positive eigenvalue.



(Strongly) log-concave polynomials
Lemma [AOV18]: If a d-homogeneous polynomial p ∈ R[x1, . . . , xn] with non-negative
coefficients is log-concave over K ⊆ R> 0n, then

(
∇2p

)
(x) has at most one positive

eigenvalue at all x ∈ K . The 0 polynomial is also considered to be log-concave.

Proof: As p is log-concave on K , ∀x ∈ K ,

∇2 log p =
p ·
(
∇2p

)
− (∇p) (∇p)>

p2 4 0.

As p2(x) ≥ 0 for any x ∈ K , p ·
(
∇2p

)
− (∇p) (∇p)> 4 0.

Now, this is a symmetric
matrix and (∇p) (∇p)> is a rank 1 matrix.

Cauchy’s Interlacing Theorem: For a symmetric matrix A ∈ Rn×n and vector v ∈ Rn,
the eigenvalues of A interlace the eigenvalues of A + vv>. That is, for B = A + vv>,

λn(A) ≤ λn(B) ≤ λn−1(A) ≤ · · · ≤ λ2(B) ≤ λ1(A) ≤ λ1(B).

Hence, p ·
(
∇2p

)
has at most one positive eigenvalue.



(Strongly) log-concave polynomials
Lemma [AOV18]: If a d-homogeneous polynomial p ∈ R[x1, . . . , xn] with non-negative
coefficients is log-concave over K ⊆ R> 0n, then

(
∇2p

)
(x) has at most one positive

eigenvalue at all x ∈ K . The 0 polynomial is also considered to be log-concave.

Proof: As p is log-concave on K , ∀x ∈ K ,

∇2 log p =
p ·
(
∇2p

)
− (∇p) (∇p)>

p2 4 0.

As p2(x) ≥ 0 for any x ∈ K , p ·
(
∇2p

)
− (∇p) (∇p)> 4 0. Now, this is a symmetric

matrix and (∇p) (∇p)> is a rank 1 matrix.

Cauchy’s Interlacing Theorem: For a symmetric matrix A ∈ Rn×n and vector v ∈ Rn,
the eigenvalues of A interlace the eigenvalues of A + vv>. That is, for B = A + vv>,

λn(A) ≤ λn(B) ≤ λn−1(A) ≤ · · · ≤ λ2(B) ≤ λ1(A) ≤ λ1(B).

Hence, p ·
(
∇2p

)
has at most one positive eigenvalue.



(Strongly) log-concave polynomials
Lemma [AOV18]: If a d-homogeneous polynomial p ∈ R[x1, . . . , xn] with non-negative
coefficients is log-concave over K ⊆ R> 0n, then

(
∇2p

)
(x) has at most one positive

eigenvalue at all x ∈ K . The 0 polynomial is also considered to be log-concave.

Proof: As p is log-concave on K , ∀x ∈ K ,

∇2 log p =
p ·
(
∇2p

)
− (∇p) (∇p)>

p2 4 0.

As p2(x) ≥ 0 for any x ∈ K , p ·
(
∇2p

)
− (∇p) (∇p)> 4 0. Now, this is a symmetric

matrix and (∇p) (∇p)> is a rank 1 matrix.

Cauchy’s Interlacing Theorem: For a symmetric matrix A ∈ Rn×n and vector v ∈ Rn,
the eigenvalues of A interlace the eigenvalues of A + vv>. That is, for B = A + vv>,

λn(A) ≤ λn(B) ≤ λn−1(A) ≤ · · · ≤ λ2(B) ≤ λ1(A) ≤ λ1(B).

Hence, p ·
(
∇2p

)
has at most one positive eigenvalue.



(Strongly) log-concave polynomials

Hence, p ·
(
∇2p

)
has at most one positive eigenvalue.

As, p has non-negative coefficients and K ⊆ Rn
>0, p(x) ≥ 0 ∀x ∈ K . Thus, ∇2p has at

most one positive eigenvalue at any x ∈ K .



Strongly log-concave distributions

I Let µ : 2[n] → Rn
≥0 be a probability distribution on the subsets of the set [n]. Then,

gµ(x) =
∑
S⊆[n]

µ(S) ·
∏
i∈S

xi .

is called the generating polynomial of µ.

I If gµ is d-homogeneous, then we say µ is d-homogeneous; i.e.,
supp(µ) = {S ⊆ [n] : |S | = d}.

I If gµ is strongly log-concave on {1}, then we say µ is strongly log-concave at 1.
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Markov Chain corresponding to µ

Define a Markov chainMµ as follows:
I State space ofMµ is the support of µ.

I Transition probabilities: for τ ∈ supp(µ), drop an element i ∈ τ , chosen uniformly
at random.Then among all sets σ ⊃ τ \ {i} in the support of µ choose one with
probability proportional to µ (σ).

Mµ is reversible with stationary distribution µ.

Goal: To show thatMµ mixes rapidly.
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Main Result

Theorem: Let µ : 2[n] → R≥0 be a d-homogeneous strongly log-concave probability
distribution (at 1). If Pµ denotes the transition probability matrix ofMµ and X (k)
denotes the collection of size-k subsets of [n] which are contained in some element of
supp(µ), then for every 0 ≤ k ≤ d − 1, Pµ has at most |X (k)| ≤

(n
k

)
eigenvalues of

value > 1− k+1
d . In particular,Mµ has spectral gap at least 1

d , and if τ is in the
support of µ and 0 < ε < 1, the total variation mixing time of the Markov chainMµ

started at τ is at most

tτ (ε) ≤ d log

(
1

εµ(τ)

)
.

From now on, by strongly log-concave, we will mean strongly log-concave at {1}.
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Proof Idea

I As µ is d-homogeneous and strongly log-concave, gµ is multiaffine,
d-homogeneous and strongly-log concave polynomial.

I From any multiaffine, d-homogeneous and strongly log concave polynomial p with
non-negative coefficients, create a pure, d-dimensional, weighted simplicial
complex (X p,w).

I Show that the strong log-concavity of p implies that this simplicial complex is a
0-local spectral expander.

I We have already shown that, for a pure, d-dimensional, weighted 0-local spectral
expander, for all 0 ≤ k < d the second largest eigenvalue of P∧k is at most k

k+1 .
Use this to argue that the second largest eigenvalue of P∨d is at most 1− 1

d .

I Observe that P∨d is exactly the same as Pµ.
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Strongly log-concave polynomials to Local Spectral Expanders

Let p =
∑

S cSx
S ∈ R [x1, . . . , xn] be a multiaffine, d-homogeneous, strongly

log-concave polynomial with non-negative coefficients, where xS =
∏

i∈S xi .

The pure d-dimensional, weighted simplicial complex (X p,w) is defined as follows:

I The maximal faces are all S ⊆ [n] s.t. the coefficient of xS in p is non-zero.
Downward close this set to obtain a simplicial complex.

I For all S ∈ X p(d), w(S) = cS . For d − 1 ≥ k ≥ 1 and τ ∈ X (k), recursively
define w(τ) =

∑
σ∈X (k+1):σ⊃τ w(σ).

We want to show that (X p,w) is a 0-local spectral expander. Notice that, as p has
non-negative coefficients, the weights of all faces in (X p,w) are non-negative.
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Strongly log-concave polynomials to Local Spectral Expanders
Fix a simplex τ ∈ X p(k). Let pτ =

(∏
i∈τ ∂i

)
p.

Note that pτ is (d − k)-homogeneous.

Lemma 3: For any 0 ≤ k ≤ d , and any simplex τ ∈ X p(k),w(τ) = (d − k)! · pτ (1).

Proof: By induction on d − k .
Base case: If dim(τ) = d , then as p is multiaffine, pτ = cτ . Hence, true by definition of w .

Induction step: Suppose the statement holds for all simplices σ ∈ X p(k + 1) and fix a simplex
τ ∈ X p(k). Then by definition,

w(τ) =
∑

σ∈X p(k+1):
σ⊃τ

w(σ)
(A)
= (d − k − 1)!

∑
σ∈X p(k+1):

σ⊃τ

pσ(1) = (d − k − 1)!
∑

i∈X p
τ (1)

pτ∪i (1)

(B)
= (d − k − 1)!

n∑
i=1

∂ipτ (1)
(C)
= (d − k)! · pτ (1),

(A): Induction hypothesis. (B) As ∂ipτ = 0, for i 6∈ X p
τ (1),

(C): Euler’s identity: For a d-homogeneous polynomial p, d · p(x) =
∑n

k=1 xk∂kp(x).
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Strongly log-concave polynomials to Local Spectral Expanders

Proposition 1: Let p ∈ R[x1, . . . , xn] be a multiaffine, d-homogeneous polynomial,
strongly log-concave polynomial with non-negative coefficients. Then (X p,w) is a
0-local-spectral-expander.

Proof: Recall that, P̃∧τ,1 is the transition probability matrix of the non-lazy random

walk on the link X p
τ . We need to show that λ2

(
P̃∧τ,1

)
≤ 0 for all τ ∈ X . Fix a τ . Since

p is strongly log-concave, pτ is log-concave. Hence, ∇2pτ (1) has at most one positive
eigenvalue. Let

∇̃2pτ =
1

d − k − 1
diag (∇pτ (1))−1∇2pτ (1).
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∇̃2pτ =
1

d − k − 1
diag (∇pτ (1))−1∇2pτ (1).

=⇒
(
∇̃2pτ

)
(i , j) =

(∂i∂jpτ ) (1)

(d − k − 1) · (∂ipτ ) (1)

=
(d − k − 2)! (∂i∂jpτ ) (1)

(d − k − 1)! · (∂ipτ ) (1)

=
w (τ ∪ {i , j})
w (τ ∪ {i})

(from Lemma 3)

=
wτ ({i , j})
wτ ({i})

= P̃∧τ,1({i}, {j})
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Proof of the main result: The chainMµ is exactly the same as the chain P∨d for the
simplicial complex X gµ .

Therefore, λ2 (Pµ) = λ2 (P∨d ) = λ2
(
P∧d−1

)
, (∵ P∨d and P∧d−1

have the same non-zero eigenvalues). Moreover, P∨d is PSD. So, λ∗ (Pµ) = λ2
(
P∧d−1

)
.

Since gµ is strongly log-concave, by Proposition 1, X gµ is 0-local-spectral-expander.
Therefore by Theorem 1,

λ2
(
P∧d−1

)
≤ 1− 1

(d − 1) + 1
= 1− 1

d
.

Fact: For any reversible, irreducible Markov chain (Ω,P, π) , ε > 0, and any starting
state τ ∈ Ω, tτ (ε) ≤ 1

1−λ∗(P) · log
(

1
ε·π(τ)

)
.

Thus, forMµ, tτ (ε) ≤ d · log
(

1
ε·µ(τ)

)
.
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Corollary of the main result: Sampling and counting bases of matroids

Let M = ([n], I) be an arbitrary matroid on n elements of rank r .

Let µ be the uniform distribution on the bases of the matroid M. It follows that µ is
r -homogeneous.

Then, µ is strongly log-concave [AHK18iii, AOV18iv]. This implies that the chainMµ

converges rapidly to stationary distribution. This gives the first polynomial time
algorithm to generate a uniformly random base of a matroid.

Note that to runMµ we only need an oracle to test whether a given set S ⊆ [n] is an
independent set of M. Therefore, with only polynomially many queries (in n, r , log 1

ε )
we can generate a random base of M.

iiiKarim Adiprasito, June Huh, and Eric Katz. “Hodge theory for combinatorial geometries”. In: Annals of Mathematics.
ivNima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. “Log-concave polynomials, entropy, and a deterministic approximation

algorithm for counting bases of matroids”. In: FOCS 2018.
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Corollary of the main result: Sampling and counting bases of matroids
Corollary: For any matroid M = ([n], I) of rank r , any basis B of M and 0 < ε < 1,
the mixing time of the Markov chain Mµ starting at B is at most

tB(ε) ≤ r log (nr/ε) ≤ r2 log (n/ε) .

Proof: tB (ε) ≤ r · log (1/(ε · µ(B))). A matroid of rank r on n elements has at most(n
r

)
≤ nr bases. Thus, µ(B) ≤ nr .

By equivalence of approximate counting and approximate sampling for self-reducible
problems [JVV86v] we have the following,

Corollary: There is a randomized algorithm that for any matroid M on n elements with
rank r given by an independent set oracle, and any 0 < ε < 1, counts the number of
bases of M up to a multiplicative factor of 1± δ with probability at least 1− δ in time
polynomial in n, r , 1/ε, log (1/δ).

vMark Jerrum, Leslie Valiant, and Vijay Vazirani. “Random Generation of Combinatorial Structures from a Uniform Distribution”.

In: Theoretical Computer Science 43 (1986), pp. 169–188.
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Bases Exchange Graph

The bases exchange graph of a matroid M, denoted by GM is a graph that has a vertex
for every basis of M and two bases B , B ′ are connected by an edge if |B∆B ′| = 2.

The exchange axiom implies that this graph is connected.

Mihail and Vazirani [MV86vi] conjectured that the bases exchange graph has expansion
at least 1.
M. Mihail and U. Vazirani. “On the expansion of 0/1 polytopes”. In: Journal of Combi-
natorial Theory. B (1989).

viM. Mihail and U. Vazirani. “On the expansion of 0/1 polytopes”. In: Journal of Combinatorial Theory. B (1989).
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Proving the conjecture

Fix a rank r matroid M = ([n], I), let µ denote the uniform distribution on the bases of
M, and consider the simplicial complex X gµ .

Pµ is the transition matrix for the Markov chainMµ. From Theorem 2,
λ2(Pµ) ≤ 1− 1

r .

AsMµ is a reversible Markov chain, we can represent it as a weighted undirected graph
HM .
I The vertices of HM correspond to bases of M.
I The weight of an edge between two bases τ , τ ′ is,Pµ(τ, τ ′) = Pµ(τ ′, τ),

i.e. the (weighted) adjacency matrix of HM is Pµ.
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Bases Exchange Walk

Thus, by Cheeger’s inequality,

cond (HM) ≥ 1− λ2 (Pµ)

2
≥

1−
(
1− 1

r

)
2

=
1
2r
.

Note that GM is the unweighted base graph of HM .

For any non-empty set S ⊂ B such that |S | ≤ |B|/2. As Pµ is a stochastic matrix,
vol(S) = |S |.

cond (HM) ≤ cond (S) =

∑
τ∈S ,τ ′ /∈S Pµ (τ, τ ′)

|S |
(A)
≤
∑

τ∈S ,τ ′ 6∈S
1
2r

|S |
=

1
2r |E (S ,S)|
|S |

=
h(S)

2r
.

(A): If Pµ(τ, τ ′) 6= 0, then |τ ∩ τ ′| = r − 1. Pµ(τ, τ ′) = 1
r ·

1
|{σ∈B : τ∩τ ′⊂σ}| ≤

1
2r .
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A characterisation of strongly-log concave polynomials

Definition: A polynomial p ∈ R[x1, . . . , xn] is said to be decomposable if there exists a
nonempty subset I ( [n] and nonzero polynomials g ∈ R[xi : i ∈ I ], h ∈ R[xi : i 6∈ I ] for
which f = g + h. Otherwise, f is indecomposable.

Theorem: Let p ∈ R[x1, . . . , xn] be a d-homogeneous polynomial such that:
1. for any 0 6 k 6 d − 2 and any (i1, . . . , ik) ∈ [n]k , ∂i1 · · · ∂ikp is indecomposable,

and
2. for any (i1, . . . , id−2) ∈ [n]d−2, the quadratic ∂i1 . . . ∂id−2p is either identically zero,

or log-concave at 1.
Then p is strongly log-concave at 1.
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A characterisation of strongly-log concave polynomials

Fact: [AOV18vii] A degree-d homogeneous polynomial p ∈ R[x1, . . . , xn] with
non-negative coefficients is log-concave over Rn

>0 iff (∇2p)(x) has at most one positive
eigenvalue at all x ∈ Rn

>0.

Proof: By induction on the degree of p. If the degree of p is at most 2, then 2 implies
that p is log-concave at 1. Let q be a non-zero first or second order derivative of p.
Then,

∇2 log q =
q ·
(
∇2q

)
− (∇q) (∇q)>

q2 =
− (∇q) (∇q)>

q2 4 0.

Hence, all derivatives of p are also log-concave; so the theorem is true.

viiNima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. “Log-concave polynomials, entropy, and a deterministic approximation

algorithm for counting bases of matroids”. In: FOCS 2018.
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A characterisation of strongly-log concave polynomials

Induction Step: d ≥ 3.

Let pi := ∂ip. From induction hypothesis, all pi are strongly
log-concave.

Define the normalised Hessian ∇̃2p = 1
d−1diag(∇p(1))−1∇2p(1). Can be shown to be

stochastic.

We’ll use the following inner product: 〈ϕ,ψ〉p = (d − 1)
∑n

j=1 ϕ(j)ψ(j)(∂jp(1)). This
gives ‖ϕ‖2p = 〈ϕ,ϕ〉p. Can be shown that (∇̃2p) is self-adjoint w.r.t. this inner product.

〈ϕ, (∇̃2p)ψ〉p = 〈ϕ,∇2p(1)ψ〉 (A)
=

1
d − 2

n∑
k=1

〈ϕ,∇2pk(1)ψ〉 =
1

d − 2

n∑
k=1

〈ϕ, ∇̃2pkψ〉pk (∗)

(A): From Euler’s identity.
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A characterisation of strongly-log concave polynomials

Strategy: Let µ be an eigenvalue of ∇̃2p with eigenvector ϕ. Prove that µ 6 µ2.

This suffices: ∇̃2p is stochastic =⇒ µ 6 1. So, µ = 1 or µ 6 0. So, to prove that
∇̃2p has (exactly) one positive eigenvalue, it is enough to show that λ2(∇̃2p) < 1.

View ∇2p(1) as adjacency matrix of a weighted undirected graph with weights ∂i∂jp
and ∇̃2p as the normalised adjacency matrix. As p is indecomposable, the
corresponding graph ∇̃2p is connected, so λ2(∇̃2p) < 1 =⇒ λ2(∇̃2p) ≤ 0.
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A characterisation of strongly-log concave polynomials

To prove: µ 6 µ2. Will show µ ‖ϕ‖2p ≤ µ2 ‖ϕ‖2p.

µ ‖ϕ‖2p = 〈ϕ, µϕ〉p = 〈ϕ, (∇̃2p)ϕ〉p
from (*)

= 1
d−2

∑n
k=1〈ϕ, (∇̃2pk)ϕ〉pk

Let ϕ = ϕ⊥1
k + ϕ1

k , where ϕ
⊥1
k is the component orthogonal to 1 and ϕ1

k =
〈ϕ,1〉pk
〈1,1〉pk

1
parallel to 1.

From the induction hypothesis, pk is strongly log-concave. Hence, ∇2pk(1) and
therefore, ∇̃2pk have at most one positive eigenvalue. So, 〈ϕ⊥1

k , (∇̃2pk)ϕ⊥1
k 〉pk 6 0.

Thus,

µ ‖ϕ‖2p 6
1

d − 2

n∑
k=1

〈ϕ1
k , (∇̃2pk)ϕ1

k〉pk =
1

d − 2

n∑
k=1

〈ϕ1
k , ϕ

1
k〉pk =

1
d − 2

n∑
k=1

〈ϕ, 1〉2pk
〈1, 1〉pk

.
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