Sampling Bases of a Matroid

Sruthi Gorantla, Bhargav Thankey

IISc

May 11, 2021

Outline

Preliminaries

- ► Linear Algebra
- Simplicial Complexes
- ▶ Walks on Simplicial Complexes and some known results

► Recap

- Strongly log-concave polynomials and distributions
- Main result
- Secondary results

Results

- A randomised, polynomial time algorithm to sample a uniform random basis of a matroid \$\Rightarrow\$ FPRAS to count the number of bases of a matroid (Since Sampling \$\Low\$ Counting).
- Expansion of the bases exchange graph of a matroid is 1.

Results

- A randomised, polynomial time algorithm to sample a uniform random basis of a matroid \$\Rightarrow\$ FPRAS to count the number of bases of a matroid (Since Sampling \$\Low\$ Counting).
- Expansion of the bases exchange graph of a matroid is 1.
- Simplicial Complexes
 - A simplicial complex X on the ground set [n] is a nonempty collection of subsets of [n] that is downward closed. The elements of X are called faces/simplices. For any 1 ≤ k ≤ n, we define the set of k-faces as,

 $X(k) = \{\tau \in X \mid \dim(\tau) = k\}.$

Results

- A randomised, polynomial time algorithm to sample a uniform random basis of a matroid \$\Rightarrow\$ FPRAS to count the number of bases of a matroid (Since Sampling \$\Low\$ Counting).
- Expansion of the bases exchange graph of a matroid is 1.
- Simplicial Complexes
 - A simplicial complex X on the ground set [n] is a nonempty collection of subsets of [n] that is downward closed. The elements of X are called faces/simplices. For any 1 ≤ k ≤ n, we define the set of k-faces as,

$$X(k) = \{\tau \in X \mid \dim(\tau) = k\}.$$

• We defined a weighted simplicial complex (X, w) and a balanced weight function w.

Results

- A randomised, polynomial time algorithm to sample a uniform random basis of a matroid \$\Rightarrow\$ FPRAS to count the number of bases of a matroid (Since Sampling \$\Low\$ Counting).
- Expansion of the bases exchange graph of a matroid is 1.

Simplicial Complexes

A simplicial complex X on the ground set [n] is a nonempty collection of subsets of [n] that is downward closed. The elements of X are called faces/simplices. For any 1 ≤ k ≤ n, we define the set of k-faces as,

$$X(k) = \{\tau \in X \mid \dim(\tau) = k\}.$$

We defined a weighted simplicial complex (X, w) and a balanced weight function w.
 For any 1 ≤ k < d, where d is the dimension of X, we saw the walks P[∧]_k and P[∨]_{k+1}. They are PSD and have the same non-zero eigenvalues.

Simplicial Complexes

• Link of a face $\tau \in X(k)$: $X_{\tau} = \{\sigma \setminus \tau \mid \sigma \in X, \sigma \supset \tau\}$.

ⁱTali Kaufman and Izhar Oppenheim. "High Order Random Walks: Beyond Spectral Gap". In: APPROX/RANDOM. 2018, 47:1–47:17.

Simplicial Complexes

- Link of a face $\tau \in X(k)$: $X_{\tau} = \{\sigma \setminus \tau \mid \sigma \in X, \sigma \supset \tau\}.$
- 1-skeleton of X: G(X(1), X(2)).

ⁱTali Kaufman and Izhar Oppenheim. "High Order Random Walks: Beyond Spectral Gap". In: APPROX/RANDOM. 2018, 47:1–47:17.

Simplicial Complexes

- Link of a face $\tau \in X(k)$: $X_{\tau} = \{\sigma \setminus \tau \mid \sigma \in X, \sigma \supset \tau\}$.
- 1-skeleton of X: G(X(1), X(2)).

Local Spectral Expanders

• Non-lazy walk on the 1-skeleton: $\widetilde{P}_1^{\wedge} = 2\left(P_1^{\wedge} - \frac{l}{2}\right)$.

ⁱTali Kaufman and Izhar Oppenheim. "High Order Random Walks: Beyond Spectral Gap". In: APPROX/RANDOM. 2018, 47:1–47:17.

Simplicial Complexes

- Link of a face $\tau \in X(k)$: $X_{\tau} = \{\sigma \setminus \tau \mid \sigma \in X, \sigma \supset \tau\}.$
- 1-skeleton of X: G(X(1), X(2)).

Local Spectral Expanders

- Non-lazy walk on the 1-skeleton: $\widetilde{P}_1^{\wedge} = 2\left(P_1^{\wedge} \frac{l}{2}\right)$.
- ▶ Non-lazy walk on the 1-skeleton of a link X_{τ} : $\widetilde{P}^{\wedge}_{\tau,1}$.

ⁱTali Kaufman and Izhar Oppenheim. "High Order Random Walks: Beyond Spectral Gap". In: APPROX/RANDOM. 2018, 47:1–47:17.

Simplicial Complexes

- Link of a face $\tau \in X(k)$: $X_{\tau} = \{\sigma \setminus \tau \mid \sigma \in X, \sigma \supset \tau\}.$
- 1-skeleton of X: G(X(1), X(2)).

Local Spectral Expanders

- Non-lazy walk on the 1-skeleton: $\widetilde{P}_1^{\wedge} = 2\left(P_1^{\wedge} \frac{l}{2}\right)$.
- Non-lazy walk on the 1-skeleton of a link X_{τ} : $\widetilde{P}^{\wedge}_{\tau,1}$.
- ▶ Definition (Local Spectral Expanders) [KO18]ⁱ: For $\lambda \ge 0$, a pure *d*-dimensional weighted complex (X, w) is a λ -local-spectral-expander if for every $0 \le k < d 1$, and for every $\tau \in X(k)$, we have $\lambda_2 \left(\tilde{P}^{\wedge}_{\tau,1} \right) \le \lambda$.

ⁱTali Kaufman and Izhar Oppenheim. "High Order Random Walks: Beyond Spectral Gap". In: APPROX/RANDOM. 2018, 47:1–47:17.

Theorem 1 [KO18]ⁱⁱ: Let (X, w) be a pure *d*-dimensional weighted 0-local spectral expander and let $0 \le k < d$. Then, for all $-1 \le i \le k$, P_k^{\wedge} has at most $|X(i)| \le {n \choose i}$ eigenvalues of value $> 1 - \frac{i+1}{k+1}$, where for convenience, we set $X(-1) = \varphi$ and ${n \choose -1} = 0$. In particular, the second largest eigenvalue of P_k^{\wedge} is at most $\frac{k}{k+1}$.

ⁱⁱTali Kaufman and Izhar Oppenheim. "High Order Random Walks: Beyond Spectral Gap". In: APPROX/RANDOM. 2018, 47:1–47:17.

Outline

Preliminaries

- ► Linear Algebra
- Simplicial Complexes
- ▶ Walks on Simplicial Complexes and some known results
- ► Recap
- Strongly log-concave polynomials and distributions
- Main results
- Secondary results

A polynomial p ∈ ℝ[x₁, x₂,..., x_n] with non-negative coefficients is *log-concave* on a subset K ⊆ ℝⁿ_{>0} if log p is a concave function at any point in K.

A polynomial p ∈ ℝ[x₁, x₂,..., x_n] with non-negative coefficients is *log-concave* on a subset K ⊆ ℝⁿ_{≥0} if log p is a concave function at any point in K. Or equivalently, its hessian ∇² log p is negative semi-definite on K.

A polynomial p ∈ ℝ[x₁, x₂,..., x_n] with non-negative coefficients is *log-concave* on a subset K ⊆ ℝⁿ_{≥0} if log p is a concave function at any point in K. Or equivalently, its hessian ∇² log p is negative semi-definite on K.

▶ *p* is strongly log-concave on *K* if for any $k \ge 0$, and any sequence of integers $1 \le i_1, \ldots, i_k \le n$,

 $(\partial_{i_1}\ldots\partial_{i_k}p)(x_1,\ldots,x_n)$

is log-concave on K.

A polynomial p ∈ ℝ[x₁, x₂,..., x_n] with non-negative coefficients is *log-concave* on a subset K ⊆ ℝⁿ_{≥0} if log p is a concave function at any point in K. Or equivalently, its hessian ∇² log p is negative semi-definite on K.

▶ *p* is strongly log-concave on *K* if for any $k \ge 0$, and any sequence of integers $1 \le i_1, \ldots, i_k \le n$,

 $(\partial_{i_1}\ldots\partial_{i_k}p)(x_1,\ldots,x_n)$

is log-concave on K.

For proving the results, we'll only need strong log-concavity at $K = \{1\}$.

Lemma [AOV18]: If a *d*-homogeneous polynomial $p \in \mathbb{R}[x_1, \ldots, x_n]$ with non-negative coefficients is log-concave over $K \subseteq \mathbb{R} > 0^n$, then $(\nabla^2 p)(x)$ has at most one positive eigenvalue at all $x \in K$. The 0 polynomial is also considered to be log-concave.

Lemma [AOV18]: If a *d*-homogeneous polynomial $p \in \mathbb{R}[x_1, \ldots, x_n]$ with non-negative coefficients is log-concave over $K \subseteq \mathbb{R} > 0^n$, then $(\nabla^2 p)(x)$ has at most one positive eigenvalue at all $x \in K$. The 0 polynomial is also considered to be log-concave.

Proof: As p is log-concave on K, $\forall x \in K$,

$$\nabla^2 \log p = \frac{p \cdot (\nabla^2 p) - (\nabla p) (\nabla p)^{\top}}{p^2} \preccurlyeq 0.$$

As $p^2(x) \ge 0$ for any $x \in K$, $p \cdot (\nabla^2 p) - (\nabla p) (\nabla p)^\top \preccurlyeq 0$.

Lemma [AOV18]: If a *d*-homogeneous polynomial $p \in \mathbb{R}[x_1, \ldots, x_n]$ with non-negative coefficients is log-concave over $K \subseteq \mathbb{R} > 0^n$, then $(\nabla^2 p)(x)$ has at most one positive eigenvalue at all $x \in K$. The 0 polynomial is also considered to be log-concave.

Proof: As p is log-concave on K, $\forall x \in K$,

$$abla^2 \log p = rac{p \cdot \left(
abla^2 p
ight) - \left(
abla p
ight) \left(
abla p
ight)^{ op}}{p^2} \preccurlyeq 0.$$

As $p^2(x) \ge 0$ for any $x \in K$, $p \cdot (\nabla^2 p) - (\nabla p) (\nabla p)^\top \preccurlyeq 0$. Now, this is a symmetric matrix and $(\nabla p) (\nabla p)^\top$ is a rank 1 matrix.

Lemma [AOV18]: If a *d*-homogeneous polynomial $p \in \mathbb{R}[x_1, \ldots, x_n]$ with non-negative coefficients is log-concave over $K \subseteq \mathbb{R} > 0^n$, then $(\nabla^2 p)(x)$ has at most one positive eigenvalue at all $x \in K$. The 0 polynomial is also considered to be log-concave.

Proof: As p is log-concave on K, $\forall x \in K$,

$$abla^2 \log p = rac{p \cdot \left(
abla^2 p
ight) - \left(
abla p
ight) \left(
abla p
ight)^{ op}}{p^2} \preccurlyeq 0.$$

As $p^2(x) \ge 0$ for any $x \in K$, $p \cdot (\nabla^2 p) - (\nabla p) (\nabla p)^\top \preccurlyeq 0$. Now, this is a symmetric matrix and $(\nabla p) (\nabla p)^\top$ is a rank 1 matrix.

Cauchy's Interlacing Theorem: For a symmetric matrix $A \in \mathbb{R}^{n \times n}$ and vector $v \in \mathbb{R}^n$, the eigenvalues of A interlace the eigenvalues of $A + vv^{\top}$. That is, for $B = A + vv^{\top}$,

 $\lambda_n(A) \leq \lambda_n(B) \leq \lambda_{n-1}(A) \leq \cdots \leq \lambda_2(B) \leq \lambda_1(A) \leq \lambda_1(B).$

Hence, $p \cdot (\nabla^2 p)$ has at most one positive eigenvalue.

Hence, $p \cdot (\nabla^2 p)$ has at most one positive eigenvalue.

As, p has non-negative coefficients and $K \subseteq \mathbb{R}^n_{>0}$, $p(x) \ge 0 \ \forall x \in K$. Thus, $\nabla^2 p$ has at most one positive eigenvalue at any $x \in K$.

• Let $\mu: 2^{[n]} \to \mathbb{R}^n_{\geq 0}$ be a probability distribution on the subsets of the set [n]. Then,

$$g_{\mu}(x) = \sum_{S \subseteq [n]} \mu(S) \cdot \prod_{i \in S} x_i.$$

is called the *generating polynomial* of μ .

• Let $\mu: 2^{[n]} \to \mathbb{R}^n_{\geq 0}$ be a probability distribution on the subsets of the set [n]. Then,

$$g_{\mu}(x) = \sum_{S \subseteq [n]} \mu(S) \cdot \prod_{i \in S} x_i.$$

is called the *generating polynomial* of μ .

▶ If g_{μ} is *d*-homogeneous, then we say μ is *d*-homogeneous;

• Let $\mu: 2^{[n]} \to \mathbb{R}^n_{\geq 0}$ be a probability distribution on the subsets of the set [n]. Then,

$$g_{\mu}(x) = \sum_{S \subseteq [n]} \mu(S) \cdot \prod_{i \in S} x_i.$$

is called the *generating polynomial* of μ .

▶ If g_{μ} is *d*-homogeneous, then we say μ is *d*-homogeneous; i.e., supp $(\mu) = \{S \subseteq [n] : |S| = d\}.$

• Let $\mu: 2^{[n]} \to \mathbb{R}^n_{\geq 0}$ be a probability distribution on the subsets of the set [n]. Then,

$$g_{\mu}(x) = \sum_{S \subseteq [n]} \mu(S) \cdot \prod_{i \in S} x_i.$$

is called the *generating polynomial* of μ .

- ▶ If g_{μ} is *d*-homogeneous, then we say μ is *d*-homogeneous; i.e., $supp(\mu) = \{S \subseteq [n] : |S| = d\}.$
- If g_{μ} is strongly log-concave on $\{1\}$, then we say μ is strongly log-concave at 1.

Define a Markov chain \mathcal{M}_{μ} as follows:

• State space of \mathcal{M}_{μ} is the support of μ .

Define a Markov chain \mathcal{M}_{μ} as follows:

- State space of \mathcal{M}_{μ} is the support of μ .
- Transition probabilities: for $\tau \in \text{supp}(\mu)$, drop an element $i \in \tau$, chosen uniformly at random.

Define a Markov chain \mathcal{M}_{μ} as follows:

- State space of \mathcal{M}_{μ} is the support of μ .
- ► Transition probabilities: for $\tau \in \text{supp}(\mu)$, drop an element $i \in \tau$, chosen uniformly at random. Then among all sets $\sigma \supset \tau \setminus \{i\}$ in the support of μ choose one with probability proportional to $\mu(\sigma)$.

Define a Markov chain \mathcal{M}_{μ} as follows:

- State space of \mathcal{M}_{μ} is the support of μ .
- Transition probabilities: for τ ∈ supp(μ), drop an element i ∈ τ, chosen uniformly at random. Then among all sets σ ⊃ τ \ {i} in the support of μ choose one with probability proportional to μ(σ).

 \mathcal{M}_{μ} is reversible with stationary distribution μ .

Define a Markov chain \mathcal{M}_{μ} as follows:

- State space of \mathcal{M}_{μ} is the support of μ .
- Transition probabilities: for τ ∈ supp(μ), drop an element i ∈ τ, chosen uniformly at random. Then among all sets σ ⊃ τ \ {i} in the support of μ choose one with probability proportional to μ(σ).

 \mathcal{M}_{μ} is reversible with stationary distribution μ .

Goal: To show that \mathcal{M}_{μ} mixes rapidly.

Outline

Preliminaries

- ► Linear Algebra
- Simplicial Complexes
- ▶ Walks on Simplicial Complexes and some known results

► Recap

Strongly log-concave polynomials and distributions

Main Result

Secondary Results

Main Result

Theorem: Let $\mu : 2^{[n]} \to \mathbb{R}_{\geq 0}$ be a *d*-homogeneous strongly log-concave probability distribution (at 1). If P_{μ} denotes the transition probability matrix of \mathcal{M}_{μ} and X(k) denotes the collection of size-*k* subsets of [*n*] which are contained in some element of $\operatorname{supp}(\mu)$, then for every $0 \le k \le d-1$, P_{μ} has at most $|X(k)| \le {n \choose k}$ eigenvalues of value $> 1 - \frac{k+1}{d}$. In particular, \mathcal{M}_{μ} has spectral gap at least $\frac{1}{d}$, and if τ is in the support of μ and $0 < \epsilon < 1$, the total variation mixing time of the Markov chain \mathcal{M}_{μ} started at τ is at most

$$t_ au(\epsilon) \leq d \log \left(rac{1}{\epsilon \mu(au)}
ight).$$

Main Result

Theorem: Let $\mu : 2^{[n]} \to \mathbb{R}_{\geq 0}$ be a *d*-homogeneous strongly log-concave probability distribution (at 1). If P_{μ} denotes the transition probability matrix of \mathcal{M}_{μ} and X(k) denotes the collection of size-*k* subsets of [*n*] which are contained in some element of $\operatorname{supp}(\mu)$, then for every $0 \le k \le d-1$, P_{μ} has at most $|X(k)| \le {n \choose k}$ eigenvalues of value $> 1 - \frac{k+1}{d}$. In particular, \mathcal{M}_{μ} has spectral gap at least $\frac{1}{d}$, and if τ is in the support of μ and $0 < \epsilon < 1$, the total variation mixing time of the Markov chain \mathcal{M}_{μ} started at τ is at most

$$t_{ au}(\epsilon) \leq d \log \left(rac{1}{\epsilon \mu(au)}
ight).$$

From now on, by strongly log-concave, we will mean strongly log-concave at $\{1\}$.

Proof Idea

As μ is *d*-homogeneous and strongly log-concave, *g*_μ is multiaffine, *d*-homogeneous and strongly-log concave polynomial.

Proof Idea

- As μ is *d*-homogeneous and strongly log-concave, *g*_μ is multiaffine, *d*-homogeneous and strongly-log concave polynomial.
- From any multiaffine, *d*-homogeneous and strongly log concave polynomial *p* with non-negative coefficients, create a pure, *d*-dimensional, weighted simplicial complex (X^p, w).

Proof Idea

- As μ is *d*-homogeneous and strongly log-concave, *g_μ* is multiaffine, *d*-homogeneous and strongly-log concave polynomial.
- From any multiaffine, *d*-homogeneous and strongly log concave polynomial *p* with non-negative coefficients, create a pure, *d*-dimensional, weighted simplicial complex (X^p, w).
- Show that the strong log-concavity of p implies that this simplicial complex is a 0-local spectral expander.

Proof Idea

- As μ is *d*-homogeneous and strongly log-concave, *g*_μ is multiaffine, *d*-homogeneous and strongly-log concave polynomial.
- From any multiaffine, *d*-homogeneous and strongly log concave polynomial *p* with non-negative coefficients, create a pure, *d*-dimensional, weighted simplicial complex (X^p, w).
- Show that the strong log-concavity of p implies that this simplicial complex is a 0-local spectral expander.
- ▶ We have already shown that, for a pure, *d*-dimensional, weighted 0-local spectral expander, for all $0 \le k < d$ the second largest eigenvalue of P_k^{\wedge} is at most $\frac{k}{k+1}$. Use this to argue that the second largest eigenvalue of P_d^{\vee} is at most $1 \frac{1}{d}$.

Proof Idea

- As μ is *d*-homogeneous and strongly log-concave, *g*_μ is multiaffine, *d*-homogeneous and strongly-log concave polynomial.
- From any multiaffine, *d*-homogeneous and strongly log concave polynomial *p* with non-negative coefficients, create a pure, *d*-dimensional, weighted simplicial complex (X^p, w).
- Show that the strong log-concavity of p implies that this simplicial complex is a 0-local spectral expander.
- ▶ We have already shown that, for a pure, *d*-dimensional, weighted 0-local spectral expander, for all $0 \le k < d$ the second largest eigenvalue of P_k^{\wedge} is at most $\frac{k}{k+1}$. Use this to argue that the second largest eigenvalue of P_d^{\vee} is at most $1 \frac{1}{d}$.
- Observe that P_d^{\vee} is exactly the same as P_{μ} .

Let $p = \sum_{S} c_{S} x^{S} \in \mathbb{R}[x_{1}, ..., x_{n}]$ be a multiaffine, *d*-homogeneous, strongly log-concave polynomial with non-negative coefficients, where $x^{S} = \prod_{i \in S} x_{i}$.

Let $p = \sum_{S} c_{S} x^{S} \in \mathbb{R}[x_{1}, ..., x_{n}]$ be a multiaffine, *d*-homogeneous, strongly log-concave polynomial with non-negative coefficients, where $x^{S} = \prod_{i \in S} x_{i}$.

The pure *d*-dimensional, weighted simplicial complex (X^{p}, w) is defined as follows:

The maximal faces are all S ⊆ [n] s.t. the coefficient of x^S in p is non-zero. Downward close this set to obtain a simplicial complex.

Let $p = \sum_{S} c_{S} x^{S} \in \mathbb{R}[x_{1}, ..., x_{n}]$ be a multiaffine, *d*-homogeneous, strongly log-concave polynomial with non-negative coefficients, where $x^{S} = \prod_{i \in S} x_{i}$.

The pure *d*-dimensional, weighted simplicial complex (X^{p}, w) is defined as follows:

The maximal faces are all S ⊆ [n] s.t. the coefficient of x^S in p is non-zero. Downward close this set to obtain a simplicial complex.

For all $S \in X^p(d)$, $w(S) = c_S$. For $d - 1 \ge k \ge 1$ and $\tau \in X(k)$, recursively define $w(\tau) = \sum_{\sigma \in X(k+1): \sigma \supset \tau} w(\sigma)$.

Let $p = \sum_{S} c_{S} x^{S} \in \mathbb{R}[x_{1}, ..., x_{n}]$ be a multiaffine, *d*-homogeneous, strongly log-concave polynomial with non-negative coefficients, where $x^{S} = \prod_{i \in S} x_{i}$.

The pure *d*-dimensional, weighted simplicial complex (X^{p}, w) is defined as follows:

The maximal faces are all S ⊆ [n] s.t. the coefficient of x^S in p is non-zero. Downward close this set to obtain a simplicial complex.

For all $S \in X^{p}(d)$, $w(S) = c_{S}$. For $d - 1 \ge k \ge 1$ and $\tau \in X(k)$, recursively define $w(\tau) = \sum_{\sigma \in X(k+1): \sigma \supset \tau} w(\sigma)$.

We want to show that (X^p, w) is a 0-local spectral expander. Notice that, as p has non-negative coefficients, the weights of all faces in (X^p, w) are non-negative.

Strongly log-concave polynomials to Local Spectral Expanders Fix a simplex $\tau \in X^{p}(k)$. Let $p_{\tau} = (\prod_{i \in \tau} \partial_{i}) p$.

Lemma 3: For any $0 \le k \le d$, and any simplex $\tau \in X^{p}(k)$, $w(\tau) = (d - k)! \cdot p_{\tau}(1)$.

Lemma 3: For any $0 \le k \le d$, and any simplex $\tau \in X^p(k)$, $w(\tau) = (d - k)! \cdot p_{\tau}(1)$.

Proof: By induction on d - k.

Lemma 3: For any $0 \le k \le d$, and any simplex $\tau \in X^p(k)$, $w(\tau) = (d - k)! \cdot p_{\tau}(1)$.

Proof: By induction on d - k. **Base case:** If dim $(\tau) = d$, then as p is multiaffine, $p_{\tau} = c_{\tau}$. Hence, true by definition of w.

Lemma 3: For any $0 \le k \le d$, and any simplex $\tau \in X^p(k)$, $w(\tau) = (d - k)! \cdot p_{\tau}(1)$.

Proof: By induction on d - k. **Base case:** If dim $(\tau) = d$, then as p is multiaffine, $p_{\tau} = c_{\tau}$. Hence, true by definition of w.

Induction step: Suppose the statement holds for all simplices $\sigma \in X^p(k+1)$ and fix a simplex $\tau \in X^p(k)$. Then by definition,

$$\begin{split} w(\tau) &= \sum_{\substack{\sigma \in X^{p}(k+1):\\ \sigma \supset \tau}} w(\sigma) \stackrel{\textbf{(A)}}{=} (d-k-1)! \sum_{\substack{\sigma \in X^{p}(k+1):\\ \sigma \supset \tau}} p_{\sigma}(1) = (d-k-1)! \sum_{i \in X^{p}_{\tau}(1)} p_{\tau \cup i}(1) \\ & (\underline{\mathsf{B}}) \\ (d-k-1)! \sum_{i=1}^{n} \partial_{i} p_{\tau}(1) \stackrel{\textbf{(C)}}{=} (d-k)! \cdot p_{\tau}(1), \end{split}$$

(A): Induction hypothesis. (B) As $\partial_i p_{\tau} = 0$, for $i \notin X^p_{\tau}(1)$, (C): Euler's identity: For a *d*-homogeneous polynomial *p*, $d \cdot p(x) = \sum_{k=1}^n x_k \partial_k p(x)$.

Proposition 1: Let $p \in \mathbb{R}[x_1, \ldots, x_n]$ be a multiaffine, *d*-homogeneous polynomial, strongly log-concave polynomial with non-negative coefficients. Then (X^p, w) is a 0-local-spectral-expander.

Proposition 1: Let $p \in \mathbb{R}[x_1, \ldots, x_n]$ be a multiaffine, *d*-homogeneous polynomial, strongly log-concave polynomial with non-negative coefficients. Then (X^p, w) is a 0-local-spectral-expander.

Proof: Recall that, $\widetilde{P}^{\wedge}_{\tau,1}$ is the transition probability matrix of the non-lazy random walk on the link X^{p}_{τ} . We need to show that $\lambda_{2}\left(\widetilde{P}^{\wedge}_{\tau,1}\right) \leq 0$ for all $\tau \in X$.

Proposition 1: Let $p \in \mathbb{R}[x_1, \ldots, x_n]$ be a multiaffine, *d*-homogeneous polynomial, strongly log-concave polynomial with non-negative coefficients. Then (X^p, w) is a 0-local-spectral-expander.

Proof: Recall that, $\widetilde{P}^{\wedge}_{\tau,1}$ is the transition probability matrix of the non-lazy random walk on the link X^{p}_{τ} . We need to show that $\lambda_{2}\left(\widetilde{P}^{\wedge}_{\tau,1}\right) \leq 0$ for all $\tau \in X$. Fix a τ . Since

p is strongly log-concave, p_{τ} is log-concave.

Proposition 1: Let $p \in \mathbb{R}[x_1, \ldots, x_n]$ be a multiaffine, *d*-homogeneous polynomial, strongly log-concave polynomial with non-negative coefficients. Then (X^p, w) is a 0-local-spectral-expander.

Proof: Recall that, $\widetilde{P}^{\wedge}_{\tau,1}$ is the transition probability matrix of the non-lazy random walk on the link X^{p}_{τ} . We need to show that $\lambda_{2}\left(\widetilde{P}^{\wedge}_{\tau,1}\right) \leq 0$ for all $\tau \in X$. Fix a τ . Since

p is strongly log-concave, p_{τ} is log-concave. Hence, $\nabla^2 p_{\tau}(1)$ has at most one positive eigenvalue. Let

$$ilde{
abla}^2 p_ au = rac{1}{d-k-1} ext{diag} \left(
abla p_ au(\mathbf{1})
ight)^{-1}
abla^2 p_ au(\mathbf{1}).$$

$$egin{aligned} & ilde{
abla}^2 p_{ au} = rac{1}{d-k-1} ext{diag} \left(
abla p_{ au}(\mathbf{1})
ight)^{-1}
abla^2 p_{ au}(\mathbf{1}) \ & \Longrightarrow \ \left(ilde{
abla}^2 p_{ au}
ight) (i,j) = rac{\left(\partial_i \partial_j p_{ au}
ight) (\mathbf{1})}{\left(d-k-1
ight) \cdot \left(\partial_i p_{ au}
ight) (\mathbf{1})} \end{aligned}$$

$$=rac{\left(d-k-2
ight)!\left(\partial_i\partial_j p_{ au}
ight)\left(\mathbf{1}
ight)}{\left(d-k-1
ight)!\cdot\left(\partial_i p_{ au}
ight)\left(\mathbf{1}
ight)}$$

$$=\frac{w\left(\tau\cup\{i,j\}\right)}{w\left(\tau\cup\{i\}\right)}$$

(from Lemma 3)

۱.

$$=rac{w_{ au}\left(\{i,j\}
ight)}{w_{ au}\left(\{i\}
ight)}=\widetilde{P}^{\wedge}_{ au,1}(\{i\},\{j\})$$

$$ilde{
abla}^2 p_ au ~=~ rac{1}{d-k-1} {
m diag} \, (
abla p_ au(1))^{-1} \,
abla^2 p_ au(1) ~=~ \widetilde{P}^\wedge_{ au,1}$$

Since p has non-negative coefficients, $\nabla p_{\tau}(1)$ has non-negative entries \implies diag $(\nabla p_{\tau}(1)) \geq 0$.

$$ilde{
abla}^2 p_ au ~=~ rac{1}{d-k-1} ext{diag} \, (
abla p_ au(1))^{-1} \,
abla^2 p_ au(1) ~=~ \widetilde{P}^\wedge_{ au,1}$$

Since p has non-negative coefficients, $\nabla p_{\tau}(1)$ has non-negative entries \implies diag $(\nabla p_{\tau}(1)) \geq 0$.

Fact: Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with at most one positive eigenvalue. Then, for any PSD matrix $B \in \mathbb{R}^{n \times n}$, *BA* has at most one positive eigenvalue.

$$ilde{
abla}^2 p_ au ~=~ rac{1}{d-k-1} {
m diag} \, (
abla p_ au(1))^{-1} \,
abla^2 p_ au(1) ~=~ \widetilde{P}^\wedge_{ au,1}$$

Since p has non-negative coefficients, $\nabla p_{\tau}(1)$ has non-negative entries \implies diag $(\nabla p_{\tau}(1)) \geq 0$.

Fact: Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with at most one positive eigenvalue. Then, for any PSD matrix $B \in \mathbb{R}^{n \times n}$, *BA* has at most one positive eigenvalue.

Since $\nabla^2 p_{\tau}(1)$ has at most one positive eigenvalue, $\tilde{\nabla}^2 p_{\tau}$ has at most one positive eigenvalue.

$$ilde{
abla}^2 p_ au ~=~ rac{1}{d-k-1} {
m diag} \, (
abla p_ au(1))^{-1} \,
abla^2 p_ au(1) ~=~ \widetilde{P}^\wedge_{ au,1}$$

Since p has non-negative coefficients, $\nabla p_{\tau}(1)$ has non-negative entries \implies diag $(\nabla p_{\tau}(1)) \geq 0$.

Fact: Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with at most one positive eigenvalue. Then, for any PSD matrix $B \in \mathbb{R}^{n \times n}$, *BA* has at most one positive eigenvalue.

Since $\nabla^2 \rho_{\tau}(1)$ has at most one positive eigenvalue, $\tilde{\nabla}^2 \rho_{\tau}$ has at most one positive eigenvalue. Therefore, $\tilde{P}^{\wedge}_{\tau,1}$ has at most one positive eigenvalue and $\lambda_2 \left(\tilde{P}^{\wedge}_{\tau,1}\right) \leq 0$.

Proof of the main result: The chain \mathcal{M}_{μ} is exactly the same as the chain P_d^{\vee} for the simplicial complex $X^{g_{\mu}}$.

Proof of the main result: The chain \mathcal{M}_{μ} is exactly the same as the chain \mathcal{P}_{d}^{\vee} for the simplicial complex $X^{g_{\mu}}$. Therefore, $\lambda_2(\mathcal{P}_{\mu}) = \lambda_2(\mathcal{P}_{d}^{\vee}) = \lambda_2(\mathcal{P}_{d-1}^{\wedge})$, $(\because \mathcal{P}_{d}^{\vee})$ and $\mathcal{P}_{d-1}^{\wedge}$ have the same non-zero eigenvalues).

Since g_{μ} is strongly log-concave, by Proposition 1, $\chi^{g_{\mu}}$ is 0-local-spectral-expander. Therefore by Theorem 1,

$$\lambda_2\left({{P_{d-1}^\wedge }}
ight) \le 1 - rac{1}{(d-1)+1} = 1 - rac{1}{d}$$

Since g_{μ} is strongly log-concave, by Proposition 1, $\chi^{g_{\mu}}$ is 0-local-spectral-expander. Therefore by Theorem 1,

$$\lambda_2\left(P^\wedge_{d-1}
ight)\leq 1-rac{1}{(d-1)+1}=1-rac{1}{d}$$

Fact: For any reversible, irreducible Markov chain (Ω, P, π) , $\epsilon > 0$, and any starting state $\tau \in \Omega$, $t_{\tau}(\epsilon) \leq \frac{1}{1-\lambda^*(P)} \cdot \log\left(\frac{1}{\epsilon \cdot \pi(\tau)}\right)$.

Since g_{μ} is strongly log-concave, by Proposition 1, $\chi^{g_{\mu}}$ is 0-local-spectral-expander. Therefore by Theorem 1,

$$\lambda_2\left({{ extsf{P}}_{d-1}^\wedge}
ight) \le 1 - rac{1}{(d-1)+1} = 1 - rac{1}{d}$$

Fact: For any reversible, irreducible Markov chain (Ω, P, π) , $\epsilon > 0$, and any starting state $\tau \in \Omega$, $t_{\tau}(\epsilon) \leq \frac{1}{1-\lambda^*(P)} \cdot \log\left(\frac{1}{\epsilon \cdot \pi(\tau)}\right)$.

Thus, for \mathcal{M}_{μ} , $t_{\tau}(\epsilon) \leq d \cdot \log\left(\frac{1}{\epsilon \cdot \mu(\tau)}\right)$.

Let $M = ([n], \mathcal{I})$ be an arbitrary matroid on *n* elements of rank *r*.

iii Karim Adiprasito, June Huh, and Eric Katz. "Hodge theory for combinatorial geometries". In: Annals of Mathematics.

^{iv} Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. "Log-concave polynomials, entropy, and a deterministic approximation algorithm for counting bases of matroids". In: FOCS 2018.

Let $M = ([n], \mathcal{I})$ be an arbitrary matroid on *n* elements of rank *r*.

Let μ be the uniform distribution on the bases of the matroid M. It follows that μ is *r*-homogeneous.

iii Karim Adiprasito, June Huh, and Eric Katz. "Hodge theory for combinatorial geometries". In: Annals of Mathematics.

^{iv} Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. "Log-concave polynomials, entropy, and a deterministic approximation algorithm for counting bases of matroids". In: FOCS 2018.

Let $M = ([n], \mathcal{I})$ be an arbitrary matroid on *n* elements of rank *r*.

Let μ be the uniform distribution on the bases of the matroid M. It follows that μ is *r*-homogeneous.

Then, μ is strongly log-concave [AHK18ⁱⁱⁱ, AOV18^{iv}]. This implies that the chain \mathcal{M}_{μ} converges rapidly to stationary distribution. This gives the first polynomial time algorithm to generate a uniformly random base of a matroid.

iii Karim Adiprasito, June Huh, and Eric Katz. "Hodge theory for combinatorial geometries". In: Annals of Mathematics.

^{iv} Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. "Log-concave polynomials, entropy, and a deterministic approximation algorithm for counting bases of matroids". In: FOCS 2018.

Let $M = ([n], \mathcal{I})$ be an arbitrary matroid on *n* elements of rank *r*.

Let μ be the uniform distribution on the bases of the matroid M. It follows that μ is *r*-homogeneous.

Then, μ is strongly log-concave [AHK18ⁱⁱⁱ, AOV18^{iv}]. This implies that the chain \mathcal{M}_{μ} converges rapidly to stationary distribution. This gives the first polynomial time algorithm to generate a uniformly random base of a matroid.

Note that to run \mathcal{M}_{μ} we only need an oracle to test whether a given set $S \subseteq [n]$ is an independent set of M. Therefore, with only polynomially many queries (in $n, r, \log \frac{1}{\epsilon}$) we can generate a random base of M.

iii Karim Adiprasito, June Huh, and Eric Katz. "Hodge theory for combinatorial geometries". In: Annals of Mathematics.

^{iv} Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. "Log-concave polynomials, entropy, and a deterministic approximation algorithm for counting bases of matroids". In: FOCS 2018.

Corollary of the main result: Sampling and counting bases of matroids Corollary: For any matroid $M = ([n], \mathcal{I})$ of rank r, any basis B of M and $0 < \epsilon < 1$, the mixing time of the Markov chain M_{μ} starting at B is at most

 $t_B(\epsilon) \leq r \log (n^r/\epsilon) \leq r^2 \log (n/\epsilon)$.

Proof: $t_B(\epsilon) \le r \cdot \log(1/(\epsilon \cdot \mu(B)))$. A matroid of rank r on n elements has at most $\binom{n}{r} \le n^r$ bases. Thus, $\mu(B) \le n^r$.

^VMark Jerrum, Leslie Valiant, and Vijay Vazirani. "Random Generation of Combinatorial Structures from a Uniform Distribution". In: Theoretical Computer Science 43 (1986), pp. 169–188.

Corollary of the main result: Sampling and counting bases of matroids Corollary: For any matroid $M = ([n], \mathcal{I})$ of rank r, any basis B of M and $0 < \epsilon < 1$, the mixing time of the Markov chain M_{μ} starting at B is at most

 $t_B(\epsilon) \leq r \log (n^r/\epsilon) \leq r^2 \log (n/\epsilon)$.

Proof: $t_B(\epsilon) \le r \cdot \log(1/(\epsilon \cdot \mu(B)))$. A matroid of rank r on n elements has at most $\binom{n}{r} \le n^r$ bases. Thus, $\mu(B) \le n^r$.

By equivalence of approximate counting and approximate sampling for self-reducible problems $[JVV86^{\nu}]$ we have the following,

^VMark Jerrum, Leslie Valiant, and Vijay Vazirani. "Random Generation of Combinatorial Structures from a Uniform Distribution". In: Theoretical Computer Science 43 (1986), pp. 169–188.

Corollary of the main result: Sampling and counting bases of matroids Corollary: For any matroid $M = ([n], \mathcal{I})$ of rank r, any basis B of M and $0 < \epsilon < 1$, the mixing time of the Markov chain M_{μ} starting at B is at most

 $t_B(\epsilon) \leq r \log (n^r/\epsilon) \leq r^2 \log (n/\epsilon)$.

Proof: $t_B(\epsilon) \le r \cdot \log(1/(\epsilon \cdot \mu(B)))$. A matroid of rank r on n elements has at most $\binom{n}{r} \le n^r$ bases. Thus, $\mu(B) \le n^r$.

By equivalence of approximate counting and approximate sampling for self-reducible problems $[JVV86^{\nu}]$ we have the following,

Corollary: There is a randomized algorithm that for any matroid M on n elements with rank r given by an independent set oracle, and any $0 < \epsilon < 1$, counts the number of bases of M up to a multiplicative factor of $1 \pm \delta$ with probability at least $1 - \delta$ in time polynomial in $n, r, 1/\epsilon, \log(1/\delta)$.

^VMark Jerrum, Leslie Valiant, and Vijay Vazirani. "Random Generation of Combinatorial Structures from a Uniform Distribution". In: Theoretical Computer Science 43 (1986), pp. 169–188.

Outline

Preliminaries

- ► Linear Algebra
- Simplicial Complexes
- ▶ Walks on Simplicial Complexes and some known results

► Recap

- Strongly log-concave polynomials and distributions
- Main Result
- Secondary Results

Bases Exchange Graph

The bases exchange graph of a matroid M, denoted by G_M is a graph that has a vertex for every basis of M and two bases B, B' are connected by an edge if $|B\Delta B'| = 2$.

^{vi}M. Mihail and U. Vazirani. "On the expansion of 0/1 polytopes". In: Journal of Combinatorial Theory. B (1989).

Bases Exchange Graph

The bases exchange graph of a matroid M, denoted by G_M is a graph that has a vertex for every basis of M and two bases B, B' are connected by an edge if $|B\Delta B'| = 2$.

The exchange axiom implies that this graph is connected.

vi M. Mihail and U. Vazirani. "On the expansion of 0/1 polytopes". In: Journal of Combinatorial Theory. B (1989).

Bases Exchange Graph

The bases exchange graph of a matroid M, denoted by G_M is a graph that has a vertex for every basis of M and two bases B, B' are connected by an edge if $|B\Delta B'| = 2$.

The exchange axiom implies that this graph is connected.

Mihail and Vazirani [MV86^{vi}] conjectured that the bases exchange graph has expansion at least 1. M. Mihail and U. Vazirani. "On the expansion of 0/1 polytopes". In: Journal of Combinatorial Theory. B (1989).

 $^{^{\}rm VI}$ M. Mihail and U. Vazirani. "On the expansion of 0/1 polytopes". In: Journal of Combinatorial Theory. B (1989).

Proving the conjecture

Fix a rank *r* matroid $M = ([n], \mathcal{I})$, let μ denote the uniform distribution on the bases of M, and consider the simplicial complex $X^{g_{\mu}}$.

Proving the conjecture

Fix a rank *r* matroid $M = ([n], \mathcal{I})$, let μ denote the uniform distribution on the bases of M, and consider the simplicial complex $X^{g_{\mu}}$.

 P_{μ} is the transition matrix for the Markov chain \mathcal{M}_{μ} . From Theorem 2, $\lambda_2(P_{\mu}) \leq 1 - \frac{1}{r}$.

Proving the conjecture

Fix a rank *r* matroid $M = ([n], \mathcal{I})$, let μ denote the uniform distribution on the bases of M, and consider the simplicial complex $X^{g_{\mu}}$.

 P_{μ} is the transition matrix for the Markov chain \mathcal{M}_{μ} . From Theorem 2, $\lambda_2(P_{\mu}) \leq 1 - \frac{1}{r}$.

As \mathcal{M}_{μ} is a reversible Markov chain, we can represent it as a weighted undirected graph H_{M} .

• The vertices of H_M correspond to bases of M.

• The weight of an edge between two bases τ , τ' is, $P_{\mu}(\tau, \tau') = P_{\mu}(\tau', \tau)$,

i.e. the (weighted) adjacency matrix of H_M is P_{μ} .

Bases Exchange Walk

Thus, by Cheeger's inequality,

$$\operatorname{cond}(H_M) \geq \frac{1 - \lambda_2(P_{\mu})}{2} \geq \frac{1 - (1 - \frac{1}{r})}{2} = \frac{1}{2r}.$$

Bases Exchange Walk

Thus, by Cheeger's inequality,

$$\operatorname{cond}\left(H_{\mathcal{M}}\right) \geq rac{1-\lambda_{2}\left(P_{\mu}
ight)}{2} \geq rac{1-\left(1-rac{1}{r}
ight)}{2} = rac{1}{2r}.$$

Note that G_M is the unweighted base graph of H_M .

Bases Exchange Walk

Thus, by Cheeger's inequality,

$$\operatorname{cond}(H_M) \geq \frac{1 - \lambda_2(P_{\mu})}{2} \geq \frac{1 - (1 - \frac{1}{r})}{2} = \frac{1}{2r}.$$

Note that G_M is the unweighted base graph of H_M .

For any non-empty set $S \subset \mathcal{B}$ such that $|S| \leq |\mathcal{B}|/2$. As P_{μ} is a stochastic matrix, vol(S) = |S|.

$$\operatorname{cond}(H_M) \leq \operatorname{cond}(S) = \frac{\sum_{\tau \in S, \tau' \notin S} P_{\mu}(\tau, \tau')}{|S|} \stackrel{\text{(A)}}{\leq} \frac{\sum_{\tau \in S, \tau' \notin S} \frac{1}{2r}}{|S|} = \frac{\frac{1}{2r} |E(S, \overline{S})|}{|S|} = \frac{h(S)}{2r}.$$

(A): If $P_{\mu}(\tau, \tau') \neq 0$, then $|\tau \cap \tau'| = r - 1$. $P_{\mu}(\tau, \tau') = \frac{1}{r} \cdot \frac{1}{|\{\sigma \in \mathcal{B} : \tau \cap \tau' \subseteq \sigma\}|} \leq \frac{1}{2r}.$

Definition: A polynomial $p \in \mathbb{R}[x_1, ..., x_n]$ is said to be decomposable if there exists a nonempty subset $I \subsetneq [n]$ and nonzero polynomials $g \in \mathbb{R}[x_i : i \in I]$, $h \in \mathbb{R}[x_i : i \notin I]$ for which f = g + h. Otherwise, f is indecomposable.

Definition: A polynomial $p \in \mathbb{R}[x_1, ..., x_n]$ is said to be decomposable if there exists a nonempty subset $I \subsetneq [n]$ and nonzero polynomials $g \in \mathbb{R}[x_i : i \in I]$, $h \in \mathbb{R}[x_i : i \notin I]$ for which f = g + h. Otherwise, f is indecomposable.

Theorem: Let $p \in \mathbb{R}[x_1, \ldots, x_n]$ be a *d*-homogeneous polynomial such that:

- 1. for any $0 \le k \le d 2$ and any $(i_1, \ldots, i_k) \in [n]^k$, $\partial_{i_1} \cdots \partial_{i_k} p$ is indecomposable, and
- 2. for any $(i_1, \ldots, i_{d-2}) \in [n]^{d-2}$, the quadratic $\partial_{i_1} \ldots \partial_{i_{d-2}} p$ is either identically zero, or log-concave at **1**.

Then p is strongly log-concave at **1**.

Fact: [AOV18^{vii}] A degree-*d* homogeneous polynomial $p \in \mathbb{R}[x_1, \ldots, x_n]$ with non-negative coefficients is log-concave over $\mathbb{R}^n_{>0}$ iff $(\nabla^2 p)(x)$ has at most one positive eigenvalue at all $x \in \mathbb{R}^n_{>0}$.

vii Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. "Log-concave polynomials, entropy, and a deterministic approximation algorithm for counting bases of matroids". In: FOCS 2018.

Fact: [AOV18^{vii}] A degree-*d* homogeneous polynomial $p \in \mathbb{R}[x_1, \ldots, x_n]$ with non-negative coefficients is log-concave over $\mathbb{R}^n_{>0}$ iff $(\nabla^2 p)(x)$ has at most one positive eigenvalue at all $x \in \mathbb{R}^n_{>0}$.

Proof: By induction on the degree of p. If the degree of p is at most 2, then 2 implies that p is log-concave at 1.

^{vii}Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. "Log-concave polynomials, entropy, and a deterministic approximation algorithm for counting bases of matroids". In: FOCS 2018.

Fact: [AOV18^{vii}] A degree-*d* homogeneous polynomial $p \in \mathbb{R}[x_1, \ldots, x_n]$ with non-negative coefficients is log-concave over $\mathbb{R}_{>0}^n$ iff $(\nabla^2 p)(x)$ has at most one positive eigenvalue at all $x \in \mathbb{R}_{>0}^n$.

Proof: By induction on the degree of p. If the degree of p is at most 2, then 2 implies that p is log-concave at 1. Let q be a non-zero first or second order derivative of p. Then,

$$abla^2\log q = rac{q\cdot \left(
abla^2 q
ight) - \left(
abla q
ight) \left(
abla q
ight)^ op}{q^2} = rac{-\left(
abla q
ight) \left(
abla q
ight)^ op}{q^2} \preccurlyeq 0.$$

Hence, all derivatives of p are also log-concave; so the theorem is true.

^{vii}Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. "Log-concave polynomials, entropy, and a deterministic approximation algorithm for counting bases of matroids". In: FOCS 2018.

Induction Step: $d \ge 3$.

Induction Step: $d \ge 3$. Let $p_i := \partial_i p$. From induction hypothesis, all p_i are strongly log-concave.

Induction Step: $d \ge 3$. Let $p_i := \partial_i p$. From induction hypothesis, all p_i are strongly log-concave.

Define the normalised Hessian $\tilde{\nabla}^2 p = \frac{1}{d-1} \text{diag}(\nabla p(1))^{-1} \nabla^2 p(1)$. Can be shown to be stochastic.

Induction Step: $d \ge 3$. Let $p_i := \partial_i p$. From induction hypothesis, all p_i are strongly log-concave.

Define the normalised Hessian $\tilde{\nabla}^2 p = \frac{1}{d-1} \text{diag}(\nabla p(1))^{-1} \nabla^2 p(1)$. Can be shown to be stochastic.

We'll use the following inner product: $\langle \varphi, \psi \rangle_p = (d-1) \sum_{j=1}^n \varphi(j) \psi(j) (\partial_j p(1))$. This gives $\|\varphi\|_p^2 = \langle \varphi, \varphi \rangle_p$. Can be shown that $(\tilde{\nabla}^2 p)$ is self-adjoint w.r.t. this inner product.

Induction Step: $d \ge 3$. Let $p_i := \partial_i p$. From induction hypothesis, all p_i are strongly log-concave.

Define the normalised Hessian $\tilde{\nabla}^2 p = \frac{1}{d-1} \text{diag}(\nabla p(1))^{-1} \nabla^2 p(1)$. Can be shown to be stochastic.

We'll use the following inner product: $\langle \varphi, \psi \rangle_p = (d-1) \sum_{j=1}^n \varphi(j) \psi(j)(\partial_j p(1))$. This gives $\|\varphi\|_p^2 = \langle \varphi, \varphi \rangle_p$. Can be shown that $(\tilde{\nabla}^2 p)$ is self-adjoint w.r.t. this inner product.

$$\langle \varphi, (\tilde{\nabla}^2 \rho) \psi \rangle_{\rho} = \langle \varphi, \nabla^2 \rho(\mathbf{1}) \psi \rangle \stackrel{\text{(A)}}{=} \frac{1}{d-2} \sum_{k=1}^n \langle \varphi, \nabla^2 \rho_k(\mathbf{1}) \psi \rangle = \frac{1}{d-2} \sum_{k=1}^n \langle \varphi, \tilde{\nabla}^2 \rho_k \psi \rangle_{\rho_k} \quad (*)$$

(A): From Euler's identity.

Strategy: Let μ be an eigenvalue of $\tilde{\nabla}^2 p$ with eigenvector φ . Prove that $\mu \leq \mu^2$.

Strategy: Let μ be an eigenvalue of $\tilde{\nabla}^2 p$ with eigenvector φ . Prove that $\mu \leq \mu^2$. This suffices: $\tilde{\nabla}^2 p$ is stochastic $\implies \mu \leq 1$. So, $\mu = 1$ or $\mu \leq 0$. So, to prove that $\tilde{\nabla}^2 p$ has (exactly) one positive eigenvalue, it is enough to show that $\lambda_2(\tilde{\nabla}^2 p) < 1$.

Strategy: Let μ be an eigenvalue of $\tilde{\nabla}^2 p$ with eigenvector φ . Prove that $\mu \leq \mu^2$.

This suffices: $\tilde{\nabla}^2 p$ is stochastic $\implies \mu \leq 1$. So, $\mu = 1$ or $\mu \leq 0$. So, to prove that $\tilde{\nabla}^2 p$ has (exactly) one positive eigenvalue, it is enough to show that $\lambda_2(\tilde{\nabla}^2 p) < 1$.

View $\nabla^2 p(1)$ as adjacency matrix of a weighted undirected graph with weights $\partial_i \partial_j p$ and $\tilde{\nabla}^2 p$ as the normalised adjacency matrix. As p is indecomposable, the corresponding graph $\tilde{\nabla}^2 p$ is connected, so $\lambda_2(\tilde{\nabla}^2 p) < 1 \implies \lambda_2(\tilde{\nabla}^2 p) \leq 0$.

$$\mu \|\varphi\|_{\rho}^{2} = \langle \varphi, \mu\varphi \rangle_{\rho} = \langle \varphi, (\tilde{\nabla}^{2}\rho)\varphi \rangle_{\rho} \stackrel{\text{from (*)}}{=} \frac{1}{d-2} \sum_{k=1}^{n} \langle \varphi, (\tilde{\nabla}^{2}\rho_{k})\varphi \rangle_{\rho_{k}}$$

$$\mu \|\varphi\|_{p}^{2} = \langle \varphi, \mu\varphi \rangle_{p} = \langle \varphi, (\tilde{\nabla}^{2}p)\varphi \rangle_{p} \stackrel{\text{from (*)}}{=} \frac{1}{d-2} \sum_{k=1}^{n} \langle \varphi, (\tilde{\nabla}^{2}p_{k})\varphi \rangle_{p_{k}}$$

Let $\varphi = \varphi_k^{\perp 1} + \varphi_k^1$, where $\varphi_k^{\perp 1}$ is the component orthogonal to 1 and $\varphi_k^1 = \frac{\langle \varphi, 1 \rangle_{p_k}}{\langle 1, 1 \rangle_{p_k}} 1$ parallel to 1.

$$\mu \|\varphi\|_{\rho}^{2} = \langle \varphi, \mu\varphi \rangle_{\rho} = \langle \varphi, (\tilde{\nabla}^{2}\rho)\varphi \rangle_{\rho} \stackrel{\text{from (*)}}{=} \frac{1}{d-2} \sum_{k=1}^{n} \langle \varphi, (\tilde{\nabla}^{2}\rho_{k})\varphi \rangle_{\rho_{k}}$$

Let $\varphi = \varphi_k^{\perp 1} + \varphi_k^1$, where $\varphi_k^{\perp 1}$ is the component orthogonal to 1 and $\varphi_k^1 = \frac{\langle \varphi, 1 \rangle_{p_k}}{\langle 1, 1 \rangle_{p_k}} 1$ parallel to 1.

From the induction hypothesis, p_k is strongly log-concave. Hence, $\nabla^2 p_k(1)$ and therefore, $\tilde{\nabla}^2 p_k$ have at most one positive eigenvalue. So, $\langle \varphi_k^{\perp 1}, (\tilde{\nabla}^2 p_k) \varphi_k^{\perp 1} \rangle_{p_k} \leq 0$.

$$\mu \|\varphi\|_{\rho}^{2} = \langle \varphi, \mu\varphi \rangle_{\rho} = \langle \varphi, (\tilde{\nabla}^{2}\rho)\varphi \rangle_{\rho} \stackrel{\text{from (*)}}{=} \frac{1}{d-2} \sum_{k=1}^{n} \langle \varphi, (\tilde{\nabla}^{2}\rho_{k})\varphi \rangle_{\rho_{k}}$$

Let $\varphi = \varphi_k^{\perp 1} + \varphi_k^1$, where $\varphi_k^{\perp 1}$ is the component orthogonal to 1 and $\varphi_k^1 = \frac{\langle \varphi, 1 \rangle_{p_k}}{\langle 1, 1 \rangle_{p_k}} 1$ parallel to 1.

From the induction hypothesis, p_k is strongly log-concave. Hence, $\nabla^2 p_k(1)$ and therefore, $\tilde{\nabla}^2 p_k$ have at most one positive eigenvalue. So, $\langle \varphi_k^{\perp 1}, (\tilde{\nabla}^2 p_k) \varphi_k^{\perp 1} \rangle_{p_k} \leq 0$.

Thus,

$$\mu \|\varphi\|_p^2 \leqslant \frac{1}{d-2} \sum_{k=1}^n \langle \varphi_k^1, (\tilde{\nabla}^2 p_k) \varphi_k^1 \rangle_{p_k} = \frac{1}{d-2} \sum_{k=1}^n \langle \varphi_k^1, \varphi_k^1 \rangle_{p_k} = \frac{1}{d-2} \sum_{k=1}^n \frac{\langle \varphi, 1 \rangle_{p_k}^2}{\langle 1, 1 \rangle_{p_k}}.$$

A characterisation of strongly-log concave polynomials $\mu \|\varphi\|_p^2 \leq \frac{1}{d-2} \sum_{k=1}^n \frac{\langle \varphi, \mathbf{1} \rangle_{p_k}^2}{\langle \mathbf{1}, \mathbf{1} \rangle_{p_k}}.$

A characterisation of strongly-log concave polynomials $\mu \|\varphi\|_p^2 \leq \frac{1}{d-2} \sum_{k=1}^n \frac{\langle \varphi, \mathbf{1} \rangle_{p_k}^2}{\langle \mathbf{1}, \mathbf{1} \rangle_{p_k}}.$

Now

$$\langle \mathbf{1}, \mathbf{1} \rangle_{p_k} = (d-2) \sum_{i=1}^n (\partial_i p_k(\mathbf{1})) = (d-2)(d-1) \cdot p_k(\mathbf{1})$$

A characterisation of strongly-log concave polynomials $\mu \|\varphi\|_p^2 \leq \frac{1}{d-2} \sum_{k=1}^n \frac{\langle \varphi, \mathbf{1} \rangle_{p_k}^2}{\langle \mathbf{1}, \mathbf{1} \rangle_{p_k}}.$

Now

$$\langle \mathbf{1}, \mathbf{1} \rangle_{p_k} = (d-2) \sum_{i=1}^n (\partial_i p_k(\mathbf{1})) = (d-2)(d-1) \cdot p_k(\mathbf{1})$$

and

$$\begin{split} \langle \varphi, \mathbf{1} \rangle_{p_k} &= (d-2) \sum_{i=1}^n \varphi(i)(\partial_i p_k(\mathbf{1})) \\ &= (d-2) \sum_{i=1}^n \varphi(i)(\partial_i \partial_k p(\mathbf{1})) = (d-2) \sum_{i=1}^n \varphi(i)(\partial_k \partial_i p(\mathbf{1})) \\ &= (d-2) \cdot ((\nabla^2 p(\mathbf{1}))\varphi)(k). \end{split}$$

A characterisation of strongly-log concave polynomials $\langle \mathbf{1}, \mathbf{1} \rangle_{p_k} = (d-2)(d-1) \cdot p_k(\mathbf{1}) \text{ and } \langle \varphi, \mathbf{1} \rangle_{p_k} = (d-2) \cdot ((\nabla^2 p(\mathbf{1}))\varphi)(k).$ A characterisation of strongly-log concave polynomials $\langle \mathbf{1}, \mathbf{1} \rangle_{p_k} = (d-2)(d-1) \cdot p_k(\mathbf{1}) \text{ and } \langle \varphi, \mathbf{1} \rangle_{p_k} = (d-2) \cdot ((\nabla^2 p(\mathbf{1}))\varphi)(k).$ This gives,

$$rac{\langle arphi, \mathbf{1}
angle_{p_k}}{\langle \mathbf{1}, \mathbf{1}
angle_{p_k}} = rac{1}{(d-1) \cdot p_k} ((
abla^2 p(\mathbf{1})) arphi)(k) = ((ilde{
abla}^2 p) arphi)(k) = \mu \cdot arphi(k).$$

A characterisation of strongly-log concave polynomials $\langle 1, 1 \rangle_{p_k} = (d-2)(d-1) \cdot p_k(1)$ and $\langle \varphi, 1 \rangle_{p_k} = (d-2) \cdot ((\nabla^2 p(1))\varphi)(k)$. This gives,

$$rac{\langle arphi, \mathbf{1}
angle_{p_k}}{\langle \mathbf{1}, \mathbf{1}
angle_{p_k}} = rac{1}{(d-1) \cdot p_k} ((
abla^2 p(\mathbf{1})) arphi)(k) = ((ilde{
abla}^2 p) arphi)(k) = \mu \cdot arphi(k).$$

Finally,

$$\begin{split} \mu \left\|\varphi\right\|_{p}^{2} &\leqslant \frac{1}{d-2} \sum_{k=1}^{n} \frac{\langle \varphi, \mathbf{1} \rangle_{p_{k}}^{2}}{\langle \mathbf{1}, \mathbf{1} \rangle_{p_{k}}} = \frac{\mu}{d-2} \sum_{k=1}^{n} \varphi(k) \langle \varphi, \mathbf{1} \rangle_{p_{k}} \\ &= \mu \sum_{k=1}^{n} \varphi(k) ((\nabla^{2} p(\mathbf{1})) \varphi)(k) = \mu \langle \varphi, (\nabla^{2} p(\mathbf{1})) \varphi \rangle = \mu \langle \varphi, (\tilde{\nabla}^{2} p) \varphi \rangle_{p} = \mu^{2} \left\|\varphi\right\|_{p}^{2}. \end{split}$$