Monotone Circuit Lower bounds via Query-to-Communication Lifting

Pritish Kamath

based on joint works with

Ankit Garg

Mika Göös

Robert Robere

FSTTCS 2019

Workshop on Extension Complexity and Lifting Theorems

IIT Bombay

Lower Bounds on Algorithms?

What makes problems computationally hard?

Lower Bounds on Algorithms?

Dynamic Programming

Divide-and-Conquer

Fibonacci Heaps

Fast Fourier Transform

Lower Bounds on Algorithms Circuits?

Size: Number of gates

Size: Number of gates

Monotone:
$$\forall i : x_i \leq y_i \implies f(x) \leq f(y)$$

Size: Number of gates

Monotone:
$$\forall i : x_i \leq y_i \implies f(x) \leq f(y)$$

Monotone Circuit Lower Bounds

► [Razborov84, AB85] : *k*-CLIQUE requires exponential sized monotone circuits

Size: Number of gates

Monotone:
$$\forall i : x_i \leq y_i \implies f(x) \leq f(y)$$

Monotone Circuit Lower Bounds

- ► [Razborov84, AB85] : *k*-CLIQUE requires exponential sized monotone circuits
- ► [Razborov85] : MATCHING ∈ P requires super-polynomial sized monotone circuits

Size: Number of gates

Monotone:
$$\forall i : x_i \leq y_i \implies f(x) \leq f(y)$$

Monotone Circuit Lower Bounds

- ► [Razborov84, AB85] : *k*-CLIQUE requires exponential sized monotone circuits
- ▶ [Razborov85] : MATCHING ∈ P requires super-polynomial sized monotone circuits
- ► [Tardos88] : TARDOS ∈ P requires exponential sized monotone circuits

Connections:

- Communication Complexity Karchmer-Wigderson games
- Proof Complexity Monotone Feasible Interpolation
- LP Extension Complexity Hrubeš-Razborov / Göös-Jain-Watson
- Cryptography Secret Sharing

Weak Model

Strong Model

Resolution Refutations

Monotone Circuits

Feasible Interpolation [BPR97, Kra97]

Resolution Refutations

Monotone Circuits

COROLLARY

Monotone (Real) Circuit Complexity of XOR-SAT_n is $2^{n^{\Omega(1)}}$.

COROLLARY Monotone (Real) Circuit Complexity of XOR-SAT_n is $2^{n^{\Omega(1)}}$.

X: input

n

1

$v_1\oplus v_2\oplus v_3$	=	0
$v_1 \oplus v_2 \oplus v_3$	=	1
:		
$v_{n-2} \oplus v_{n-1} \oplus v_n$	=	1

COROLLARY Monotone (Real) Circuit Complexity of Xor-SAT_n is $2^{n^{\Omega(1)}}$.

	X: input	
	\downarrow	
$Xor-Sat_n(X) := 1$	1	$v_1\oplus v_2\oplus v_3~=~0$
· m	0	$v_1\oplus v_2\oplus v_3~=~1$
117	:	:
X is <i>un</i> -satisfiable	1	$v_{n-2} \oplus v_{n-1} \oplus v_n = 1$

	X: input	
	\downarrow	
$Xor-Sat_n(X) := 1$	1	$v_1\oplus v_2\oplus v_3~=~0$
	0	$v_1\oplus v_2\oplus v_3~=~1$
111		:
X is <i>un</i> -satisfiable	1	$v_{n-2}\oplus v_{n-1}\oplus v_n=1$

Monotone vs Non-monotone Separations

► XOR-SAT \in NC² ▶ MATCHING \in RNC² [Razborov 85] ▶ Tardos $\in P$

[Tardos 88]

Corollary

Monotone (Real) Circuit Complexity of Xor-SAT_n is $2^{n^{\Omega(1)}}$

Method of Approximations

Lifting theorems!

Resolution Refutations

Monotone Circuits

Lifting theorems!

Resolution Refutations

Monotone Circuits

Query Complexity

Lifting Theorem

Communication Complexity

Communication Complexity [Yao79]

Search Problem *R* Relation $R \subseteq \mathcal{X} \times \mathcal{Y} \times \mathcal{O}$

Alice:	$x\in \mathcal{X}$
Bob:	$y\in \mathcal{Y}$
Output:	$o \in R(x, y)$

CC(R) := number of bits

Communication Complexity [Yao79]

Search Problem *R* Relation $R \subseteq \mathcal{X} \times \mathcal{Y} \times \mathcal{O}$

Alice:	$x\in \mathcal{X}$
Bob:	$y\in \mathcal{Y}$
Output:	$o \in R(x,y)$

CC(R) := number of bits = depth of protocol tree

[Karchmer-Wigderson 88] Search Problem mKW_f monotone $f : \{0,1\}^n \rightarrow \{0,1\}$

Alice:	$x \in f^{-1}(1)$
Bob:	$y \in f^{-1}(0)$
Output:	<i>i</i> s.t. $x_i = 1, y_i = 0$

[Karchmer-Wigderson 88] Search Problem mKW_f monotone $f : \{0,1\}^n \rightarrow \{0,1\}$

Alice:	$x \in f^{-1}(1)$
Bob:	$y \in f^{-1}(0)$
Output:	<i>i</i> s.t. $x_i = 1, y_i = 0$

[Karchmer-Wigderson 88] Search Problem mKW_f monotone $f : \{0,1\}^n \rightarrow \{0,1\}$

[Karchmer-Wigderson 88] Search Problem mKW_f monotone $f : \{0,1\}^n \rightarrow \{0,1\}$

[Karchmer-Wigderson 88] Search Problem mKW_f monotone $f : \{0,1\}^n \rightarrow \{0,1\}$

[Karchmer-Wigderson 88] Search Problem mKW_f monotone $f : \{0,1\}^n \rightarrow \{0,1\}$

> Alice: $x \in f^{-1}(1)$ Bob: $y \in f^{-1}(0)$ Output: *i* s.t. $x_i = 1, y_i = 0$

 $\frac{\text{Theorem [KW 88]}}{\text{CC}(\text{mKW}_f) = \text{Mon-Circuit-depth}(f)}$

[Karchmer-Wigderson 88] Search Problem mKW_f monotone $f : \{0,1\}^n \rightarrow \{0,1\}$

$$\label{eq:cc} \hline \begin{array}{l} \hline \\ \hline \\ \mathsf{CC}(\mathsf{mKW}_f) \ = \ \Theta(\log(\mathrm{Mon}\text{-}\mathrm{Formula}\text{-}\mathrm{size}(f))) \end{array}$$

Formulas Monotone Circuits

Query Complexity

Lifting Theorem

Communication Complexity

Query Complexity

Search Problem S Relation $S \subseteq \{0,1\}^n \times \mathcal{O}$ Input: $z \in \{0,1\}^n$ Output: $o \in S(z)$

DT(R) := number of bits queried = depth of decision tree

unsatisfiable $\mathcal{F} = F_1 \wedge F_2 \wedge \cdots \wedge F_m$

unsatisfiable $\mathcal{F} = F_1 \wedge F_2 \wedge \cdots \wedge F_m$

unsatisfiable $\mathcal{F} = F_1 \wedge F_2 \wedge \cdots \wedge F_m$

Query Complexity \iff Resolution Refutations

Search Problem $S_{\mathcal{F}}$ unsatisfiable $\mathcal{F} = F_1 \wedge F_2 \wedge \cdots \wedge F_m$

Input: $z \in \{0, 1\}^n$ **Output:** *i* s.t. $F_i(z) = 0$

Query Complexity \iff Resolution Refutations

Search Problem $S_{\mathcal{F}}$

unsatisfiable $\mathcal{F} = F_1 \wedge F_2 \wedge \cdots \wedge F_m$

Input: $z \in \{0, 1\}^n$ **Output:** *i* s.t. $F_i(z) = 0$

Monotone Formulas

Query Complexity

Lifting Theorem

Communication Complexity

Query-to-Communication Lifting

$$S \subseteq \{0,1\}^n \times \mathcal{O}$$

 $S \circ g^n \subseteq \mathcal{X}^n \times \mathcal{Y}^n \times \mathcal{O}$

Indexing Gadget

$$g : [m] \times \{0,1\}^m \rightarrow \{0,1\}$$

 $g(x,y) = y_x$
 $m = n^{O(1)}$

Lifting Theorem [Raz-McKenzie 99, ...]

Fixed *g*, such that for all *S*:

 $\mathsf{CC}(S \circ g^n) \geq \Omega(\mathsf{DT}(S) \cdot \log m)$

[Raz-McKenzie 99, ...]

Monotone Formula Complexity of Xor-SAT_n is $2^{n^{\Omega(1)}}$

[Raz-McKenzie 99, ...]

Monotone Formula Complexity of XOR-SAT_n is $2^{n^{\Omega(1)}}$

Bottleneck: Decision Trees & Communication Protocols are all tree-like objects.

[Raz-McKenzie 99, ...]

Monotone Formula Complexity of XOR-SAT_n is $2^{n^{\Omega(1)}}$

Bottleneck: Decision Trees & Communication Protocols are all tree-like objects.

Challenge: We need to study *DAG*-like objects!

Resolution Depth

Monotone Formulas

Unprovability of Lower Bounds on Circuit Size in Certain Fragments of Bounded Arithmetic

> Alexander A. Razborov^{*} School of Mathematics Institute for Advanced Study Princeton, NJ 08540 and Steklov Mathematical Institute Vavilova 42, 117966, GSP-1 Moscow, RUSSIA

To appear in Izvestiya of the RAN

Abstract

We show that if strong pseudorandom generators exist then the statement " α encodes a circuit of size $n^{\log \alpha}$ " for SATISFIABILITY" is not refutable in $S_2^2(\alpha)$. For refutation is $S_2^1(\alpha)$, this is proven under the weaker assumption of the existence of generators secure against the attack by small depth circuits, and for another system which is strong enough to prove exponential lower bounds for constant-depth circuits, this is shown without using any unproven hardness assumptions.

These results can be also viewed as direct corollaries of interpolation-like theorems for certain "split versions" of classical systems of Bounded Arithmetic introduced in this paper.

^{*}Supported by the grant # 93-6-6 of the Alfred P. Sloan Foundation and by the grant # 93-011-16015 of the Russian Foundation for Fundamental Research

 $F \subseteq \mathcal{X} \times \mathcal{Y} \times \mathcal{O}$

Communication Tree:

Communication Tree:

Every node v corresponds to rectangle $R_v \subseteq \mathcal{X} \times \mathcal{Y}$ such that,

• **Root**: $R_{\text{root}} = \mathcal{X} \times \mathcal{Y}$

Communication Tree:

Every node v corresponds to rectangle $R_v \subseteq \mathcal{X} \times \mathcal{Y}$ such that,

- Root: $R_{\text{root}} = \mathcal{X} \times \mathcal{Y}$
- Internal node: $R_v = R_u \sqcup R_w$

d

c

V

 $A_{01}(x)$

b

a

 \mathcal{X}

Communication Tree:

Every node v corresponds to rectangle $R_v \subseteq \mathcal{X} \times \mathcal{Y}$ such that,

- Root: $R_{\text{root}} = \mathcal{X} \times \mathcal{Y}$
- Internal node: $R_v = R_u \sqcup R_w$

Communication Tree:

Every node v corresponds to rectangle $R_v \subseteq \mathcal{X} \times \mathcal{Y}$ such that,

- **Root**: $R_{\text{root}} = \mathcal{X} \times \mathcal{Y}$
- Internal node: $R_v = R_u \sqcup R_w$
- Leaf: R_v is labelled by $o_v \in \mathcal{O}$

valid answer to *F* for all $(x, y) \in R_{\ell}$

Communication Tree:

Every node v corresponds to rectangle $R_v \subseteq \mathcal{X} \times \mathcal{Y}$ such that,

- **Root**: $R_{\text{root}} = \mathcal{X} \times \mathcal{Y}$
- Internal node: $R_v = R_u \sqcup R_w$
- Leaf: R_v is labelled by $o_v \in \mathcal{O}$

valid answer to *F* for all $(x, y) \in R_{\ell}$

Communication DAG:

Every node v corresponds to rectangle $R_v \subseteq \mathcal{X} \times \mathcal{Y}$ such that,

- **Root**: $R_{\text{root}} = \mathcal{X} \times \mathcal{Y}$
- Internal node: $R_v = R_u \sqcup R_w$
- Leaf: R_v is labelled by $o_v \in \mathcal{O}$ valid answer to F for all $(x,y) \in R_\ell$

 \mathcal{X}

Communication DAG:

Every node v corresponds to rectangle $R_v \subseteq \mathcal{X} \times \mathcal{Y}$ such that,

- Root: $R_{\text{root}} = \mathcal{X} \times \mathcal{Y}$
- Internal node: $R_v = R_u \sqcup R_w$ $R_v \subseteq R_u \cup R_w$
- Leaf: R_v is labelled by o_v ∈ O
 valid answer to F for all (x, y) ∈ R_ℓ

 $F \subseteq \mathcal{X} \times \mathcal{Y} \times \mathcal{O}$

Communication DAG:

Every node v corresponds to rectangle $R_v \subseteq \mathcal{X} \times \mathcal{Y}$ such that,

- Root: $R_{\text{root}} = \mathcal{X} \times \mathcal{Y}$
- Internal node: $R_v = R_u \sqcup R_w$ $R_v \subseteq R_u \cup R_w$
- Leaf: R_v is labelled by o_v ∈ O
 valid answer to F for all (x, y) ∈ R_ℓ

Communication DAG:

Every node v corresponds to rectangle $R_v \subseteq \mathcal{X} \times \mathcal{Y}$ such that,

- Root: $R_{\text{root}} = \mathcal{X} \times \mathcal{Y}$
- Internal node: $R_v = R_u \sqcup R_w$ $R_v \subseteq R_u \cup R_w$
- Leaf: R_v is labelled by o_v ∈ O
 valid answer to F for all (x, y) ∈ R_ℓ

Communication DAG:

Every node v corresponds to rectangle $R_v \subseteq \mathcal{X} \times \mathcal{Y}$ such that,

- **Root**: $R_{\text{root}} = \mathcal{X} \times \mathcal{Y}$
- Internal node: $R_v = R_u \sqcup R_w$ $R_v \subseteq R_u \cup R_w$
- Leaf: R_v is labelled by $o_v \in \mathcal{O}$ valid answer to F for all $(x,y) \in R_\ell$

 $dag^{cc}(F) := log number of nodes in DAG.$

 $F \subset \mathcal{X} \times \mathcal{Y} \times \mathcal{O}$

 \mathcal{X}

 R_u

Communication DAG:

Every node v corresponds to rectangle $R_v \subseteq \mathcal{X} \times \mathcal{Y}$ such that,

- **Root**: $R_{\text{root}} = \mathcal{X} \times \mathcal{Y}$
- Internal node: $R_v = R_u \sqcup R_w$ $R_v \subseteq R_u \cup R_w$
- Leaf: R_v is labelled by $o_v \in \mathcal{O}$ valid answer to F for all $(x,y) \in R_\ell$

 $dag^{cc}(F) := log number of nodes in DAG.$

Theorem [Razborov 95, Sokolov 17]

 $dag^{cc}(mKW_f) = log Mon-Circuit-Size(f)$

 $F \subset \mathcal{X} \times \mathcal{Y} \times \mathcal{O}$

Monotone Circuit Size

Dag Comm. Complexity

Query Complexity

Lifting Theorem

Query dags

Decision Tree:

 $S \subseteq \{0,1\}^n \times \mathcal{O}$

Query dags

Decision Tree:

Every node v corresponds to sub-cube $C_v \subseteq \{0,1\}^n$ such that,

• **Root**: $C_{\text{root}} = \{0, 1\}^n$

Decision Tree:

Every node v corresponds to sub-cube $C_v \subseteq \{0,1\}^n$ such that,

- **Root**: $C_{\text{root}} = \{0, 1\}^n$
- Internal node: $C_v = C_u \sqcup C_w$

 $S \subseteq \{0,1\}^n \times \mathcal{O}$

Decision Tree:

Every node v corresponds to sub-cube $C_v \subseteq \{0,1\}^n$ such that,

- **Root**: $C_{\text{root}} = \{0, 1\}^n$
- Internal node: $C_v = C_u \sqcup C_w$

 $S \subseteq \{0,1\}^n \times \mathcal{O}$

Decision Tree:

Every node v corresponds to sub-cube $C_v \subseteq \{0,1\}^n$ such that,

- **Root**: $C_{\text{root}} = \{0, 1\}^n$
- Internal node: $C_v = C_u \sqcup C_w$
- Leaf: C_v is labelled by $o \in \mathcal{O}$

valid answer to *S* for all $z \in \{0, 1\}^n$

$$S \subseteq \{0,1\}^n \times \mathcal{O}$$

Decision Tree:

Every node v corresponds to sub-cube $C_v \subseteq \{0,1\}^n$ such that,

- **Root**: $C_{\text{root}} = \{0, 1\}^n$
- Internal node: $C_v = C_u \sqcup C_w$
- Leaf: C_v is labelled by $o \in \mathcal{O}$ valid answer to S for all $z \in \{0,1\}^n$

 $\mathsf{DT}(S) := \max \mathbf{width} \text{ of a node}$

$$S \subseteq \{0,1\}^n \times \mathcal{O}$$

Decision DAG:

Every node v corresponds to sub-cube $C_v \subseteq \{0,1\}^n$ such that,

- **Root**: $C_{\text{root}} = \{0, 1\}^n$
- Internal node: $C_v = C_u \sqcup C_w$
- Leaf: C_v is labelled by $o \in \mathcal{O}$ valid answer to S for all $z \in \{0,1\}^n$

 $\mathsf{DT}(S) := \max \operatorname{width} of a node$

$$S \subseteq \{0,1\}^n \times \mathcal{O}$$

Decision DAG:

Every node v corresponds to sub-cube $C_v \subseteq \{0,1\}^n$ such that,

- **Root**: $C_{\text{root}} = \{0, 1\}^n$
- Internal node: $C_v = C_u \sqcup C_w$ $C_v \subseteq C_u \cup C_w$
- Leaf: C_v is labelled by $o \in \mathcal{O}$

valid answer to *S* for all $z \in \{0,1\}^n$

 $\mathsf{dag}^{\mathsf{dt}}(S) := \max \, \mathbf{width} \,$ of a node

$$S \subseteq \{0,1\}^n \times \mathcal{O}$$

Decision DAG:

Every node v corresponds to sub-cube $C_v \subseteq \{0,1\}^n$ such that,

- **Root**: $C_{\text{root}} = \{0, 1\}^n$
- Internal node: $C_v = C_u \sqcup C_w$ $C_v \subseteq C_u \cup C_w$
- Leaf: C_v is labelled by $o \in \mathcal{O}$ valid answer to S for all $z \in \{0,1\}^n$

 $\mathsf{dag}^{\mathsf{dt}}(S) := \max \mathbf{width} \text{ of a node}$

$$S \subseteq \{0,1\}^n \times \mathcal{O}$$

$$C_v = 1 * 0 * * 0 * * 1 *$$

$$C_u = 1 * 0 0 * * * * * *$$

$$C_w = * * * 1 * 0 * * 1 *$$

Decision DAG:

Every node v corresponds to sub-cube $C_v \subseteq \{0,1\}^n$ such that,

- **Root**: $C_{\text{root}} = \{0, 1\}^n$
- Internal node: $C_v = C_u \sqcup C_w$ $C_v \subseteq C_u \cup C_w$
- Leaf: C_v is labelled by $o \in \mathcal{O}$ valid answer to S for all $z \in \{0,1\}^n$

 $\mathsf{dag}^{\mathsf{dt}}(S) := \max \mathbf{width} \text{ of a node}$

$$S \subseteq \{0,1\}^n \times \mathcal{O}$$

$$C_v = 1 * 0 * * 0 * * 1 *$$

$$C_u = 1 * 0 \ 0 * * * * * *$$

$$C_w = * * * 1 * 0 * * 1 *$$

Explorer vs. Adversary game: [Pud00, AD08]

- Game state is $\rho \in \{0, 1, *\}^n$.
- In each round, Explorer makes a choice:

Query. Explorer chooses $i \in [n]$ Adversary responds $b \in \{0, 1\}$ Update $\rho_i = b$ Forget. Explorer chooses $i \in [n]$

Update $\rho_i = *$

• Game ends when solution to S can be deduced from ρ .

 $dag^{dt}(S) := least d$ such that,

Explorer has a strategy that maintains ρ of width $\leq d$.

$$C_w = * * * 1 * 0 * * 1 *$$

Resolution Refutations

Monotone Circuit Size

Dag Comm. Complexity

Query Complexity

Lifting Theorem

Lifting Theorems! $S \subseteq \{0,1\}^n \times \mathcal{O}$

 $S \circ g^n \subseteq [m]^n \times (\{0,1\}^m)^n \times \mathcal{O}$

 x_1 y_1 x_2 y_2 x_3 y_3 x_4 y_4 x_5 y_5

$$\Omega(\mathsf{dag}^\mathsf{dt}(S) \cdot \log n) \ \leq \ \mathsf{dag}^\mathsf{cc}(S \circ g^n)$$

[Göös-Lovett-Meka-Watson-Zuckerman 16]

+ [Göös-K-Pitassi-Watson 17, Göös-Pitassi-Watson 17]

$$g^n(R)$$
 is like $(\underbrace{b_1, b_2, \dots, b_d}_{\text{fixed}}, \underbrace{*, *, \dots, *}_{\text{random}})$

R is
$$\rho$$
-like for $\rho \in \{0, 1, *\}^n$ with $|\operatorname{fix}(\rho)| \leq d$.

Rectangle $R \subseteq [m]^n \times (\{0,1\}^m)^n$

[Göös-Lovett-Meka-Watson-Zuckerman 16]

+ [Göös-K-Pitassi-Watson 17, Göös-Pitassi-Watson 17]

 $\sim \rightarrow$

Rectangle $R \subseteq [m]^n \times (\{0,1\}^m)^n$

 $R = \bigsqcup_i R_i$

[Göös-Lovett-Meka-Watson-Zuckerman 16]

+ [Göös-K-Pitassi-Watson 17, Göös-Pitassi-Watson 17]

Rectangle $R \subseteq [m]^n \times (\{0,1\}^m)^n$

 $R = \bigsqcup_i R_i$

• Error R_i : contained in $m^{-\Omega(d)}$ fraction of all rows/columns.

[Göös-Lovett-Meka-Watson-Zuckerman 16]

+ [Göös-K-Pitassi-Watson 17, Göös-Pitassi-Watson 17]

Rectangle $R \subseteq [m]^n \times (\{0,1\}^m)^n$

 $R = \bigsqcup_i R_i$

- Error R_i : contained in $m^{-\Omega(d)}$ fraction of all rows/columns.
- ▶ Non-Error R_i : ρ -like with $|\text{fix}(\rho)| \leq d$.

[Göös-Lovett-Meka-Watson-Zuckerman 16]

+ [Göös-K-Pitassi-Watson 17, Göös-Pitassi-Watson 17]

Rectangle $R \subseteq [m]^n \times (\{0,1\}^m)^n$

 $R = \bigsqcup_i R_i$

- Error R_i : contained in $m^{-\Omega(d)}$ fraction of all rows/columns.
- Non-Error R_i : ρ-like with |fix(ρ)| ≤ d. (in fact, support achieved on a single row)

Given n^d -sized Communication DAG for $S \circ g^n$ Extract width-O(d) Explorer strategy for S

Pre-processing:

 Partition all R_v = ⊔_i Rⁱ_v, each Rⁱ_v is ρ-like for |fix(ρ)| ≤ d. (Simplified proof: assume no error rectangles)

Pre-processing:

 Partition all R_v = ⊔_i Rⁱ_v, each Rⁱ_v is ρ-like for |fix(ρ)| ≤ d. (Simplified proof: assume no error rectangles)

Extract width-O(d) explorer strategy:

• Invariant: Game state ρ : maintain ρ -like $R' \subseteq R_v$.

Pre-processing:

 Partition all R_v = ⊔_i Rⁱ_v, each Rⁱ_v is ρ-like for |fix(ρ)| ≤ d. (Simplified proof: assume no error rectangles)

Extract width-O(d) explorer strategy:

• Invariant: Game state ρ : maintain ρ -like $R' \subseteq R_v$.

1. Root:
$$\rho = *^n$$
 and $R' = R_{\text{root}} = \mathcal{X} \times \mathcal{Y}$.

Pre-processing:

 Partition all R_v = ⊔_i Rⁱ_v, each Rⁱ_v is ρ-like for |fix(ρ)| ≤ d. (Simplified proof: assume no error rectangles)

Extract width-O(d) explorer strategy:

• Invariant: Game state ρ : maintain ρ -like $R' \subseteq R_v$.

1. **Root**:
$$\rho = *^n$$
 and $R' = R_{\text{root}} = \mathcal{X} \times \mathcal{Y}$.

Pre-processing:

 Partition all R_v = ⊔_i Rⁱ_v, each Rⁱ_v is ρ-like for |fix(ρ)| ≤ d. (Simplified proof: assume no error rectangles)

Extract width-O(d) explorer strategy:

• Invariant: Game state ρ : maintain ρ -like $R' \subseteq R_v$.

1. Root:
$$\rho = *^n$$
 and $R' = R_{root} = \mathcal{X} \times \mathcal{Y}$.

Pre-processing:

 Partition all R_v = ⊔_i Rⁱ_v, each Rⁱ_v is ρ-like for |fix(ρ)| ≤ d. (Simplified proof: assume no error rectangles)

Extract width-O(d) explorer strategy:

- Invariant: Game state ρ : maintain ρ -like $R' \subseteq R_v$.
- 1. Root: $\rho = *^n$ and $R' = R_{\text{root}} = \mathcal{X} \times \mathcal{Y}$.

Pre-processing:

 Partition all R_v = ⊔_i Rⁱ_v, each Rⁱ_v is ρ-like for |fix(ρ)| ≤ d. (Simplified proof: assume no error rectangles)

Extract width-O(d) explorer strategy:

• Invariant: Game state ρ : maintain ρ -like $R' \subseteq R_v$.

1. Root:
$$\rho = *^n$$
 and $R' = R_{\text{root}} = \mathcal{X} \times \mathcal{Y}$.

Pre-processing:

 Partition all R_v = ⊔_i Rⁱ_v, each Rⁱ_v is ρ-like for |fix(ρ)| ≤ d. (Simplified proof: assume no error rectangles)

Extract width-O(d) explorer strategy:

• Invariant: Game state ρ : maintain ρ -like $R' \subseteq R_v$.

1. Root:
$$\rho = *^n$$
 and $R' = R_{\text{root}} = \mathcal{X} \times \mathcal{Y}$.

2. Internal node: $\rho = 0 \ 1 \ 1 \ 0 \ * \ * \ * \ ? \ ? \ * \ * \ *$

Pre-processing:

 Partition all R_v = ⊔_i Rⁱ_v, each Rⁱ_v is ρ-like for |fix(ρ)| ≤ d. (Simplified proof: assume no error rectangles)

Extract width-O(d) explorer strategy:

- Invariant: Game state ρ : maintain ρ -like $R' \subseteq R_v$.
- 1. Root: $\rho = *^n$ and $R' = R_{\text{root}} = \mathcal{X} \times \mathcal{Y}$.
- 2. Internal node: $\rho = 0 \ 1 \ 1 \ 0 \ * \ * \ * \ 1 \ 0 \ 0 \ * \ * \ *$

Pre-processing:

 Partition all R_v = ⊔_i Rⁱ_v, each Rⁱ_v is ρ-like for |fix(ρ)| ≤ d. (Simplified proof: assume no error rectangles)

Extract width-O(d) explorer strategy:

- Invariant: Game state ρ : maintain ρ -like $R' \subseteq R_v$.
- 1. Root: $\rho = *^n$ and $R' = R_{\text{root}} = \mathcal{X} \times \mathcal{Y}$.
- 2. Internal node: $\rho = 0 \ 1 \ 1 \ 0 \ * \ * \ * \ 1 \ 0 \ 0 \ * \ * \ *$

Pre-processing:

 Partition all R_v = ⊔_i Rⁱ_v, each Rⁱ_v is ρ-like for |fix(ρ)| ≤ d. (Simplified proof: assume no error rectangles)

Extract width-O(d) explorer strategy:

• Invariant: Game state ρ : maintain ρ -like $R' \subseteq R_v$.

1. Root:
$$\rho = *^n$$
 and $R' = R_{\text{root}} = \mathcal{X} \times \mathcal{Y}$.

2. Internal node: $\rho = * * * 0 * * * * 1 0 0 * * *$

Pre-processing:

 Partition all R_v = ⊔_i Rⁱ_v, each Rⁱ_v is ρ-like for |fix(ρ)| ≤ d. (Simplified proof: assume no error rectangles)

Extract width-O(d) explorer strategy:

• Invariant: Game state ρ : maintain ρ -like $R' \subseteq R_v$.

1. Root:
$$\rho = *^n$$
 and $R' = R_{\text{root}} = \mathcal{X} \times \mathcal{Y}$.

2. Internal node: $\rho = * * * 0 * * * * 1 0 0 * * *$

Pre-processing:

 Partition all R_v = ⊔_i Rⁱ_v, each Rⁱ_v is ρ-like for |fix(ρ)| ≤ d. (Simplified proof: assume no error rectangles)

Extract width-O(d) explorer strategy:

• Invariant: Game state ρ : maintain ρ -like $R' \subseteq R_v$.

1. Root:
$$\rho = *^n$$
 and $R' = R_{\text{root}} = \mathcal{X} \times \mathcal{Y}$.

2. Internal node: $\rho = * * * 0 * * * * 1 0 0 * * *$

3. Leaf: Output o_v valid for $R \supseteq R'$ and hence for ρ . Game ends!

Lifting Theorems!

Resolution Width

18/23
Lifting Theorems!

Resolution Width

Monotone Real Circuits

Is there a broader context to these lifting theorems? (or does it sit alone in a corner?)

Non-deterministic query cost of $S_{\mathcal{F}} = k$

Communication

Total Search Problem mKW_f monotone $f : \{0, 1\}^n \to \{0, 1\}$ Input: $(x, y) \in f^{-1}(1) \times f^{-1}(0)$ Output: *i* s.t. $x_i = 1$, $y_i = 0$

Non-deterministic comm. cost of $mKW_f = \log n$

QueryCTotal Search Problem $S_{\mathcal{F}}$
unsatisfiable k-CNF $\mathcal{F} = F_1 \wedge \cdots \wedge F_m$ Total
mInput: $z \in \{0, 1\}^n$ InputOutput:i s.t. $F_i(z) = 0$ Output

Non-deterministic query cost of $S_F = k$

Observation. [LNNW95]

 $\{S_{\mathcal{F}}\}_{\mathcal{F}}$ is *complete* for total search problems with non-deterministic query cost k

Communication

Total Search Problem mKW_f monotone $f : \{0,1\}^n \rightarrow \{0,1\}$ **Input:** $(x, y) \in f^{-1}(1) \times f^{-1}(0)$ **Output:** i s.t. $x_i = 1, y_i = 0$

Non-deterministic comm. cost of $mKW_f = \log n$

Observation. [Gál01] $\left\{\mathsf{mKW}_{f}\right\}_{f}$ is complete for total search problemswith non-deterministic comm. cost log n

Complexity Classes in Communication Complexity Theory [Babai-Frankl-Simon 86] The Landscape of Communication Complexity Classes [Göös-Pitassi-Watson 15]

[Raz-McKenzie 99]

Query Complexity

Comm. Complexity

Karchmer

Wigderson88

21/23

In Conclusion...

