
Lifting with XOR

Suhail Sherif, Tata Institute of Fundamental Research

Based on work done with Arkadev Chattopadhyay and
Nikhil Mande

Dec 14, 2019

Statements made in these slides are for representational purposes and
are not guaranteed to be entirely accurate.



Communication Complexity for Communication
Complexity’s Sake

I This talk is aimed at a better understanding of
communication complexity.

I In this talk, we focus on two parties (Alice and Bob)
computing a total Boolean function.

I XOR functions feature in this talk because
I They are structured enough to reason about.
I There is enough mystery about them for them to be

interesting.



Communication Complexity for Communication
Complexity’s Sake

I This talk is aimed at a better understanding of
communication complexity.

I In this talk, we focus on two parties (Alice and Bob)
computing a total Boolean function.

I XOR functions feature in this talk because
I They are structured enough to reason about.
I There is enough mystery about them for them to be

interesting.



Communication Complexity for Communication
Complexity’s Sake

I This talk is aimed at a better understanding of
communication complexity.

I In this talk, we focus on two parties (Alice and Bob)
computing a total Boolean function.

I XOR functions feature in this talk because
I They are structured enough to reason about.

I There is enough mystery about them for them to be
interesting.



Communication Complexity for Communication
Complexity’s Sake

I This talk is aimed at a better understanding of
communication complexity.

I In this talk, we focus on two parties (Alice and Bob)
computing a total Boolean function.

I XOR functions feature in this talk because
I They are structured enough to reason about.
I There is enough mystery about them for them to be

interesting.



A Communication Protocol

Alice

x ∈ X
Bob

y ∈ Y
A

B A

1 A 0 1

B B

0 1 1

`

0

0

0

1

0 1

1

0 1

0 1

1

0 1 0

0

1

(x, y) is accepted
⇔

(x, y) reaches a 1-leaf.

Inputs that reach `
=

{x : x answers red}
×

{y : y answers blue}.



A Communication Protocol

Alice

x ∈ X
Bob

y ∈ Y
A

B A

1 A 0 1

B B

0 1 1

`

0

0

0

1

0 1

1

0 1

0 1

1

0 1 0

0

1

(x, y) is accepted
⇔

(x, y) reaches a 1-leaf.

Inputs that reach `
=

{x : x answers red}
×

{y : y answers blue}.



A Communication Protocol

Alice

x ∈ X
Bob

y ∈ Y
A

B A

1 A 0 1

B B

0 1 1

`

0

0

0 1

0

1

1 0 1

0

1

1

0 1

0

0 1

(x, y) is accepted
⇔

(x, y) reaches a 1-leaf.

Inputs that reach `
=

{x : x answers red}
×

{y : y answers blue}.



Rank

X

Y

Building the truth table for the function computed by the
protocol.



Rank

X

Y

Inputs that reach leaf ` contribute a rank 1 matrix.



Rank

X

Y

Inputs that reach leaves `1 or `2 form a rank ≤ 2 matrix.



Rank

X

Y

Inputs that reach any 1 leaf form a rank ≤ 2c matrix.



Rank

X

Y

Cost c protocol for F
=⇒

MF has rank ≤ 2c.



Protocol-Rank Equivalence?

Conjecture (Lovász Saks ‘88)

∃ constant α s.t. D(F ) ≤ logα rank(F )

I Connects comm comp measure with algebraic measure.
Known analogous connections have been useful.

I Has connections to graph colouring, low degree
polynomials.

For: [Lovett ‘13] showed that D(F ) . O
(√

rank(F )
)

.

Against: [Göös Pitassi Watson ‘15] showed that α ≥ 2.

Fun fact: LRC is True if you restrict the rank decomposition to
be nonnegative.



Protocol-Rank Equivalence?

Conjecture (Lovász Saks ‘88)

∃ constant α s.t. D(F ) ≤ logα rank(F )

I Connects comm comp measure with algebraic measure.

Known analogous connections have been useful.
I Has connections to graph colouring, low degree

polynomials.

For: [Lovett ‘13] showed that D(F ) . O
(√

rank(F )
)

.

Against: [Göös Pitassi Watson ‘15] showed that α ≥ 2.

Fun fact: LRC is True if you restrict the rank decomposition to
be nonnegative.



Protocol-Rank Equivalence?

Conjecture (Lovász Saks ‘88)

∃ constant α s.t. D(F ) ≤ logα rank(F )

I Connects comm comp measure with algebraic measure.
Known analogous connections have been useful.

I Has connections to graph colouring, low degree
polynomials.

For: [Lovett ‘13] showed that D(F ) . O
(√

rank(F )
)

.

Against: [Göös Pitassi Watson ‘15] showed that α ≥ 2.

Fun fact: LRC is True if you restrict the rank decomposition to
be nonnegative.



Protocol-Rank Equivalence?

Conjecture (Lovász Saks ‘88)

∃ constant α s.t. D(F ) ≤ logα rank(F )

I Connects comm comp measure with algebraic measure.
Known analogous connections have been useful.

I Has connections to graph colouring, low degree
polynomials.

For: [Lovett ‘13] showed that D(F ) . O
(√

rank(F )
)

.

Against: [Göös Pitassi Watson ‘15] showed that α ≥ 2.

Fun fact: LRC is True if you restrict the rank decomposition to
be nonnegative.



Protocol-Rank Equivalence?

Conjecture (Lovász Saks ‘88)

∃ constant α s.t. D(F ) ≤ logα rank(F )

I Connects comm comp measure with algebraic measure.
Known analogous connections have been useful.

I Has connections to graph colouring, low degree
polynomials.

For: [Lovett ‘13] showed that D(F ) . O
(√

rank(F )
)

.

Against: [Göös Pitassi Watson ‘15] showed that α ≥ 2.

Fun fact: LRC is True if you restrict the rank decomposition to
be nonnegative.



Protocol-Rank Equivalence?

Conjecture (Lovász Saks ‘88)

∃ constant α s.t. D(F ) ≤ logα rank(F )

I Connects comm comp measure with algebraic measure.
Known analogous connections have been useful.

I Has connections to graph colouring, low degree
polynomials.

For: [Lovett ‘13] showed that D(F ) . O
(√

rank(F )
)

.

Against: [Göös Pitassi Watson ‘15] showed that α ≥ 2.

Fun fact: LRC is True if you restrict the rank decomposition to
be nonnegative.



Protocol-Rank Equivalence?

Conjecture (Lovász Saks ‘88)

∃ constant α s.t. D(F ) ≤ logα rank(F )

I Connects comm comp measure with algebraic measure.
Known analogous connections have been useful.

I Has connections to graph colouring, low degree
polynomials.

For: [Lovett ‘13] showed that D(F ) . O
(√

rank(F )
)

.

Against: [Göös Pitassi Watson ‘15] showed that α ≥ 2.

Fun fact: LRC is True if you restrict the rank decomposition to
be nonnegative.



A Randomized Communication Protocol

Alice

x ∈ X

rA, a string of random bits

Bob

y ∈ Y

rB, a string of random bits

A

B A

1 A 0 1

B B

0 1 1

`

0

0

0

1

0 1

1

0 1

0 1

1

0 1 0

0

1

Pr[(x, y) is accepted]
=

Pr[(x, y) reaches a 1-leaf].

Pr[(x, y) reaches `]
=

PrrA [x answers red]
×

PrrB [y answers blue].



A Randomized Communication Protocol

Alice

x ∈ X

rA, a string of random bits

Bob

y ∈ Y

rB, a string of random bits

A

B A

1 A 0 1

B B

0 1 1

`

0

0

0

1

0 1

1

0 1

0 1

1

0 1 0

0

1

Pr[(x, y) is accepted]
=

Pr[(x, y) reaches a 1-leaf].

Pr[(x, y) reaches `]
=

PrrA [x answers red]
×

PrrB [y answers blue].



A Randomized Communication Protocol

Alice

x ∈ X

rA, a string of random bits

Bob

y ∈ Y

rB, a string of random bits

A

B A

1 A 0 1

B B

0 1 1

`

0

0

0 1

0

1

1 0 1

0

1

1

0 1

0

0 1

Pr[(x, y) is accepted]
=

Pr[(x, y) reaches a 1-leaf].

Pr[(x, y) reaches `]
=

PrrA [x answers red]
×

PrrB [y answers blue].



Small Approximate Rank

PrrA [x answers red]

PrrB [y answers blue]

0

0

.8

.5

.60.50

.4

.25

.48

.3

Pr[(x, y) reaches `] is a rank 1 matrix.

Pr[(x, y) is accepted] is a rank ≤ 2c matrix.



Small Approximate Rank

PrrA [x answers red]

PrrB [y answers blue]

0

0

.8

.5

.60.50

.4

.25

.48

.3

Pr[(x, y) reaches `] is a rank 1 matrix.

Pr[(x, y) is accepted] is a rank ≤ 2c matrix.



1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

MF

Approx. Rank ≤ 2c

.8 .9 .1 .2

0 .9 .1 .1

0 .1 .8 0

.1 0 0 1

MPr of accepting

Rank ≤ 2c

log rank1/3(F ) ≤ c.



1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

MF

Approx. Rank ≤ 2c

.8 .9 .1 .2

0 .9 .1 .1

0 .1 .8 0

.1 0 0 1

MPr of accepting

Rank ≤ 2c

log rank1/3(F ) ≤ c.



1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

MF

Approx. Rank ≤ 2c

.8 .9 .1 .2

0 .9 .1 .1

0 .1 .8 0

.1 0 0 1

MPr of accepting

Rank ≤ 2c

log rank1/3(F ) ≤ c.



1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

MF

Approx. Rank ≤ 2c

.8 .9 .1 .2

0 .9 .1 .1

0 .1 .8 0

.1 0 0 1

MPr of accepting

Rank ≤ 2c

log rank1/3(F ) ≤ c.



Protocol-Rank Equivalence?

Conjecture (ForgeGod ’05, Lee Shraibman ’07)

∃ constant β s.t. R(F ) ≤ logβ rank1/3(F )



Protocol-Rank Equivalence?

Conjecture (ForgeGod ’05, Lee Shraibman ’07)

∃ constant β s.t. R(F ) ≤ logβ rank1/3(F )

Figure: Screenshot from “Communication complexity - Wikipedia” (Dec ‘05)



Protocol-Rank Equivalence?

Conjecture (ForgeGod ’05, Lee Shraibman ’07)

∃ constant β s.t. R(F ) ≤ logβ rank1/3(F )

Implies the LRC! [Gavinsky Lovett ‘13]

Set Disjointness shows that β ≥ 2. [Kalyanasundaram
Schnitger ‘92, Razborov ‘92]

[Göös Jayram Pitassi Watson ‘17] showed that β ≥ 4.



Protocol-Rank Equivalence?

Conjecture (ForgeGod ’05, Lee Shraibman ’07)

∃ constant β s.t. R(F ) ≤ logβ rank1/3(F )

Implies the LRC! [Gavinsky Lovett ‘13]

Set Disjointness shows that β ≥ 2. [Kalyanasundaram
Schnitger ‘92, Razborov ‘92]

[Göös Jayram Pitassi Watson ‘17] showed that β ≥ 4.



Protocol-Rank Equivalence?

Conjecture (ForgeGod ’05, Lee Shraibman ’07)

∃ constant β s.t. R(F ) ≤ logβ rank1/3(F )

Implies the LRC! [Gavinsky Lovett ‘13]

Set Disjointness shows that β ≥ 2. [Kalyanasundaram
Schnitger ‘92, Razborov ‘92]

[Göös Jayram Pitassi Watson ‘17] showed that β ≥ 4.



Nonnegative Ranks

I It is known that D(F ) ≤ O(log2(rank+(F ))). [Lovász ‘90]

I One may conjecture that R(F ) ≤ logO(1)(rank+
1/3(F )).

I Or the more reasonable conjecture that

R(F ) ≤ logO(1)(max
{
rank+

1/3(F ), rank+
1/3(F ))

}
).

I [Kol Moran Shpilka Yehudayoff ‘14] did.



Nonnegative Ranks

I It is known that D(F ) ≤ O(log2(rank+(F ))). [Lovász ‘90]
I One may conjecture that R(F ) ≤ logO(1)(rank+

1/3(F )).

I Or the more reasonable conjecture that

R(F ) ≤ logO(1)(max
{
rank+

1/3(F ), rank+
1/3(F ))

}
).

I [Kol Moran Shpilka Yehudayoff ‘14] did.



Nonnegative Ranks

I It is known that D(F ) ≤ O(log2(rank+(F ))). [Lovász ‘90]
I One may conjecture that R(F ) ≤ logO(1)(rank+

1/3(F )).
I Or the more reasonable conjecture that

R(F ) ≤ logO(1)(max
{
rank+

1/3(F ), rank+
1/3(F ))

}
).

I [Kol Moran Shpilka Yehudayoff ‘14] did.



Nonnegative Ranks

I It is known that D(F ) ≤ O(log2(rank+(F ))). [Lovász ‘90]
I One may conjecture that R(F ) ≤ logO(1)(rank+

1/3(F )).
I Or the more reasonable conjecture that

R(F ) ≤ logO(1)(max
{
rank+

1/3(F ), rank+
1/3(F ))

}
).

I [Kol Moran Shpilka Yehudayoff ‘14] did.



To Cache

Log-Approximate-
Rank Conjec-

ture [LS09]

Log-Rank Con-
jecture [LS88] Strong Log-

Approximate-
Nonnegative-Rank

Conjecture [KMSY14]

Log-Approximate-
Nonnegative-Rank

Conjecture [KMSY14]



To Cache

R(F ) vs.
log rank1/3(F )

D(F ) vs.
log rank(F )

R(F ) vs.
log rank+

1/3(F )

R(F ) vs.
log
(
rank+

1/3(F ) + rank+
1/3(F )

)



XOR Compositions

Encodes an n-bit string into 2 n-bit strings, none of which give
any information about the original.
I XOR is good for this purpose. [U.S. Patent 1,310,719,

Gilbert Vernam ‘19]
I Patent expired in 1936, so we can feel free to compose

with XOR.
f ◦ XOR(x, y) = f(z) where z = x⊕ y.

I Neither Alice nor Bob have any idea about any bit of z.
I But, parity can be computed easily.
I Expect to lift from Parity Decision Trees (allowed queries

are parities, not just bits).



XOR Compositions

Encodes an n-bit string into 2 n-bit strings, none of which give
any information about the original.

I XOR is good for this purpose. [U.S. Patent 1,310,719,
Gilbert Vernam ‘19]

I Patent expired in 1936, so we can feel free to compose
with XOR.

f ◦ XOR(x, y) = f(z) where z = x⊕ y.

I Neither Alice nor Bob have any idea about any bit of z.
I But, parity can be computed easily.
I Expect to lift from Parity Decision Trees (allowed queries

are parities, not just bits).



XOR Compositions

Encodes an n-bit string into 2 n-bit strings, none of which give
any information about the original.
I XOR is good for this purpose. [U.S. Patent 1,310,719,

Gilbert Vernam ‘19]

I Patent expired in 1936, so we can feel free to compose
with XOR.

f ◦ XOR(x, y) = f(z) where z = x⊕ y.

I Neither Alice nor Bob have any idea about any bit of z.
I But, parity can be computed easily.
I Expect to lift from Parity Decision Trees (allowed queries

are parities, not just bits).



XOR Compositions

Encodes an n-bit string into 2 n-bit strings, none of which give
any information about the original.
I XOR is good for this purpose. [U.S. Patent 1,310,719,

Gilbert Vernam ‘19]
I Patent expired in 1936, so we can feel free to compose

with XOR.

f ◦ XOR(x, y) = f(z) where z = x⊕ y.

I Neither Alice nor Bob have any idea about any bit of z.
I But, parity can be computed easily.
I Expect to lift from Parity Decision Trees (allowed queries

are parities, not just bits).



XOR Compositions

Encodes an n-bit string into 2 n-bit strings, none of which give
any information about the original.
I XOR is good for this purpose. [U.S. Patent 1,310,719,

Gilbert Vernam ‘19]
I Patent expired in 1936, so we can feel free to compose

with XOR.
f ◦ XOR(x, y) = f(z) where z = x⊕ y.

I Neither Alice nor Bob have any idea about any bit of z.
I But, parity can be computed easily.
I Expect to lift from Parity Decision Trees (allowed queries

are parities, not just bits).



XOR Compositions

Encodes an n-bit string into 2 n-bit strings, none of which give
any information about the original.
I XOR is good for this purpose. [U.S. Patent 1,310,719,

Gilbert Vernam ‘19]
I Patent expired in 1936, so we can feel free to compose

with XOR.
f ◦ XOR(x, y) = f(z) where z = x⊕ y.

I Neither Alice nor Bob have any idea about any bit of z.

I But, parity can be computed easily.
I Expect to lift from Parity Decision Trees (allowed queries

are parities, not just bits).



XOR Compositions

Encodes an n-bit string into 2 n-bit strings, none of which give
any information about the original.
I XOR is good for this purpose. [U.S. Patent 1,310,719,

Gilbert Vernam ‘19]
I Patent expired in 1936, so we can feel free to compose

with XOR.
f ◦ XOR(x, y) = f(z) where z = x⊕ y.

I Neither Alice nor Bob have any idea about any bit of z.
I But, parity can be computed easily.

I Expect to lift from Parity Decision Trees (allowed queries
are parities, not just bits).



XOR Compositions

Encodes an n-bit string into 2 n-bit strings, none of which give
any information about the original.
I XOR is good for this purpose. [U.S. Patent 1,310,719,

Gilbert Vernam ‘19]
I Patent expired in 1936, so we can feel free to compose

with XOR.
f ◦ XOR(x, y) = f(z) where z = x⊕ y.

I Neither Alice nor Bob have any idea about any bit of z.
I But, parity can be computed easily.
I Expect to lift from Parity Decision Trees (allowed queries

are parities, not just bits).



Parity Decision Trees (PDTs)

Hidden Input

z ∈ {0, 1}n

Sε

S0 S1

1 S01 0 1

S010 S011

0 1 1

`

0

0

0

1

0 1

1

0 1

0 1

1

0 1 0

0

1

z is accepted
⇔

z reaches a 1-leaf.

Inputs that reach `
=

{z : z satisfies red constraints}



Parity Decision Trees (PDTs)

Hidden Input

z ∈ {0, 1}n

Sε

S0 S1

1 S01 0 1

S010 S011

0 1 1

`

0

0

0

1

0 1

1

0 1

0 1

1

0 1 0

0

1

z is accepted
⇔

z reaches a 1-leaf.

Inputs that reach `
=

{z : z satisfies red constraints}



Parity Decision Trees (PDTs)

Hidden Input

z ∈ {0, 1}n

Sε

S0 S1

1 S01 0 1

S010 S011

0 1 1

`

0

0

0 1

0

1

1 0 1

0

1

1

0 1

0

0 1

z is accepted
⇔

z reaches a 1-leaf.

Inputs that reach `
=

{z : z satisfies red constraints}



OR: Hard for deterministic PDTs

I You have to reject just one input.
I Any leaf at depth d has 2−d fraction of inputs.
I =⇒ there must be a 0-leaf at depth n.



OR: Easy for randomized PDTs

I Randomly sample S ⊆U [n].
I Query ⊕Sz.

Pr[Query outputs 0] =

{
1 if z = 0n

1/2 if z 6= 0n



Deterministic vs Randomized

OR ◦ XOR is the canonical separation of deterministic and
randomized communication complexity.

I There are no such examples known with other small
gadgets.

I For gadgets that lift query complexity, it is impossible.
What other potentially fruitful properties do PDTs have?



Deterministic vs Randomized

OR ◦ XOR is the canonical separation of deterministic and
randomized communication complexity.
I There are no such examples known with other small

gadgets.

I For gadgets that lift query complexity, it is impossible.
What other potentially fruitful properties do PDTs have?



Deterministic vs Randomized

OR ◦ XOR is the canonical separation of deterministic and
randomized communication complexity.
I There are no such examples known with other small

gadgets.
I For gadgets that lift query complexity, it is impossible.

What other potentially fruitful properties do PDTs have?



Deterministic vs Randomized

OR ◦ XOR is the canonical separation of deterministic and
randomized communication complexity.
I There are no such examples known with other small

gadgets.
I For gadgets that lift query complexity, it is impossible.

What other potentially fruitful properties do PDTs have?



When else is randomness powerful?

I RPDTs can compute affine subspaces the same way it
does AND.

Given a node in a PDT, an RPDT can tell whether the input
will reach it.

I Hence RPDTs can balance PDTs. So
RPDT (f) ≤ logPDT leaf (f).

I Open Problem: Is there anything else that RPDTs can do?
I Lifted Open Problem: Is there an XOR function easy for

randomized communication but hard for PEQ protocols?
For general functions, this question was answered very
recently. [Chattopadhyay Lovett Vinyals ‘19] exhibited a
function with the separation.



When else is randomness powerful?

I RPDTs can compute affine subspaces the same way it
does AND.
Given a node in a PDT, an RPDT can tell whether the input
will reach it.

I Hence RPDTs can balance PDTs. So
RPDT (f) ≤ logPDT leaf (f).

I Open Problem: Is there anything else that RPDTs can do?
I Lifted Open Problem: Is there an XOR function easy for

randomized communication but hard for PEQ protocols?
For general functions, this question was answered very
recently. [Chattopadhyay Lovett Vinyals ‘19] exhibited a
function with the separation.



When else is randomness powerful?

I RPDTs can compute affine subspaces the same way it
does AND.
Given a node in a PDT, an RPDT can tell whether the input
will reach it.

I Hence RPDTs can balance PDTs. So
RPDT (f) ≤ logPDT leaf (f).

I Open Problem: Is there anything else that RPDTs can do?
I Lifted Open Problem: Is there an XOR function easy for

randomized communication but hard for PEQ protocols?
For general functions, this question was answered very
recently. [Chattopadhyay Lovett Vinyals ‘19] exhibited a
function with the separation.



When else is randomness powerful?

I RPDTs can compute affine subspaces the same way it
does AND.
Given a node in a PDT, an RPDT can tell whether the input
will reach it.

I Hence RPDTs can balance PDTs. So
RPDT (f) ≤ logPDT leaf (f).

I Open Problem: Is there anything else that RPDTs can do?

I Lifted Open Problem: Is there an XOR function easy for
randomized communication but hard for PEQ protocols?
For general functions, this question was answered very
recently. [Chattopadhyay Lovett Vinyals ‘19] exhibited a
function with the separation.



When else is randomness powerful?

I RPDTs can compute affine subspaces the same way it
does AND.
Given a node in a PDT, an RPDT can tell whether the input
will reach it.

I Hence RPDTs can balance PDTs. So
RPDT (f) ≤ logPDT leaf (f).

I Open Problem: Is there anything else that RPDTs can do?
I Lifted Open Problem: Is there an XOR function easy for

randomized communication but hard for PEQ protocols?

For general functions, this question was answered very
recently. [Chattopadhyay Lovett Vinyals ‘19] exhibited a
function with the separation.



When else is randomness powerful?

I RPDTs can compute affine subspaces the same way it
does AND.
Given a node in a PDT, an RPDT can tell whether the input
will reach it.

I Hence RPDTs can balance PDTs. So
RPDT (f) ≤ logPDT leaf (f).

I Open Problem: Is there anything else that RPDTs can do?
I Lifted Open Problem: Is there an XOR function easy for

randomized communication but hard for PEQ protocols?
For general functions, this question was answered very
recently. [Chattopadhyay Lovett Vinyals ‘19] exhibited a
function with the separation.



Meet the PDT measures: Fourier Analysis

AND : {±1}n → {0, 1}

AND(z1, z2, z3) =
1

8
− 1

8
z1 −

1

8
z2 −

1

8
z3 +

1

8
z1z2 +

1

8
z1z3 +

1

8
z2z3 −

1

8
z1z2z3

Sparsity: sp(f) is the number of non-zero coefficients.
`1:
∣∣∣∣f̂ ∣∣∣∣

1
is the sum of the absolute values of the coefficients.

I Every leaf is an affine subspace in F2.
I For a function f computable by a depth-k PDT, sp(f) ≤ 22k

and
∣∣∣∣f̂ ∣∣∣∣

1
≤ 2k.

I For a function f computable by a depth-k RPDT,∣∣∣∣f̂ ∣∣∣∣
1,1/3

≤ 2k.



Meet the PDT measures: Fourier Analysis

AND : {±1}n → {0, 1}

AND(z1, z2, z3) =
1

8
− 1

8
z1 −

1

8
z2 −

1

8
z3 +

1

8
z1z2 +

1

8
z1z3 +

1

8
z2z3 −

1

8
z1z2z3

Sparsity: sp(f) is the number of non-zero coefficients.
`1:
∣∣∣∣f̂ ∣∣∣∣

1
is the sum of the absolute values of the coefficients.

I Every leaf is an affine subspace in F2.
I For a function f computable by a depth-k PDT, sp(f) ≤ 22k

and
∣∣∣∣f̂ ∣∣∣∣

1
≤ 2k.

I For a function f computable by a depth-k RPDT,∣∣∣∣f̂ ∣∣∣∣
1,1/3

≤ 2k.



Meet the PDT measures: Fourier Analysis

AND : {±1}n → {0, 1}

AND(z1, z2, z3) =
1

8
− 1

8
z1 −

1

8
z2 −

1

8
z3 +

1

8
z1z2 +

1

8
z1z3 +

1

8
z2z3 −

1

8
z1z2z3

Sparsity: sp(f) is the number of non-zero coefficients.
`1:
∣∣∣∣f̂ ∣∣∣∣

1
is the sum of the absolute values of the coefficients.

I Every leaf is an affine subspace in F2.
I For a function f computable by a depth-k PDT, sp(f) ≤ 22k

and
∣∣∣∣f̂ ∣∣∣∣

1
≤ 2k.

I For a function f computable by a depth-k RPDT,∣∣∣∣f̂ ∣∣∣∣
1,1/3

≤ 2k.



Meet the PDT measures: Fourier Analysis

AND : {±1}n → {0, 1}

AND(z1, z2, z3) =
1

8
− 1

8
z1 −

1

8
z2 −

1

8
z3 +

1

8
z1z2 +

1

8
z1z3 +

1

8
z2z3 −

1

8
z1z2z3

Sparsity: sp(f) is the number of non-zero coefficients.
`1:
∣∣∣∣f̂ ∣∣∣∣

1
is the sum of the absolute values of the coefficients.

I Every leaf is an affine subspace in F2.

I For a function f computable by a depth-k PDT, sp(f) ≤ 22k

and
∣∣∣∣f̂ ∣∣∣∣

1
≤ 2k.

I For a function f computable by a depth-k RPDT,∣∣∣∣f̂ ∣∣∣∣
1,1/3

≤ 2k.



Meet the PDT measures: Fourier Analysis

AND : {±1}n → {0, 1}

AND(z1, z2, z3) =
1

8
− 1

8
z1 −

1

8
z2 −

1

8
z3 +

1

8
z1z2 +

1

8
z1z3 +

1

8
z2z3 −

1

8
z1z2z3

Sparsity: sp(f) is the number of non-zero coefficients.
`1:
∣∣∣∣f̂ ∣∣∣∣

1
is the sum of the absolute values of the coefficients.

I Every leaf is an affine subspace in F2.
I For a function f computable by a depth-k PDT, sp(f) ≤ 22k

and
∣∣∣∣f̂ ∣∣∣∣

1
≤ 2k.

I For a function f computable by a depth-k RPDT,∣∣∣∣f̂ ∣∣∣∣
1,1/3

≤ 2k.



Lifting with XOR

Measure for f Measure for F = f ◦ XOR

sp(f) rank(F ) = sp(f)

sp1/3(f) sp1/3′(f)/n ≤ rank1/3(F ) ≤ sp1/3(f)∣∣∣∣f̂ ∣∣∣∣
1

∣∣∣∣F̂ ∣∣∣∣
1

=
∣∣∣∣f̂ ∣∣∣∣

1∣∣∣∣f̂ ∣∣∣∣
1,1/3

∣∣∣∣F̂ ∣∣∣∣
1,1/3

=
∣∣∣∣f̂ ∣∣∣∣

1,1/3

PDT (f) PDT (f)1/6 ≤ D(F ) ≤ 2PDT (f)



Lifting with XOR

Measure for f Measure for F = f ◦ XOR
sp(f) rank(F ) = sp(f)

sp1/3(f) sp1/3′(f)/n ≤ rank1/3(F ) ≤ sp1/3(f)∣∣∣∣f̂ ∣∣∣∣
1

∣∣∣∣F̂ ∣∣∣∣
1

=
∣∣∣∣f̂ ∣∣∣∣

1∣∣∣∣f̂ ∣∣∣∣
1,1/3

∣∣∣∣F̂ ∣∣∣∣
1,1/3

=
∣∣∣∣f̂ ∣∣∣∣

1,1/3

PDT (f) PDT (f)1/6 ≤ D(F ) ≤ 2PDT (f)

If PDT (f) ≤ logO(1) sp(f), then the LRC is true for XOR
functions!



Lifting with XOR

Measure for f Measure for F = f ◦ XOR
sp(f) rank(F ) = sp(f)

sp1/3(f) sp1/3′(f)/n ≤ rank1/3(F ) ≤ sp1/3(f)

∣∣∣∣f̂ ∣∣∣∣
1

∣∣∣∣F̂ ∣∣∣∣
1

=
∣∣∣∣f̂ ∣∣∣∣

1∣∣∣∣f̂ ∣∣∣∣
1,1/3

∣∣∣∣F̂ ∣∣∣∣
1,1/3

=
∣∣∣∣f̂ ∣∣∣∣

1,1/3

PDT (f) PDT (f)1/6 ≤ D(F ) ≤ 2PDT (f)

If RPDT (f) ≤ logO(1) sp1/3(f), then the LARC is true for XOR
functions!



Lifting with XOR

Measure for f Measure for F = f ◦ XOR
sp(f) rank(F ) = sp(f)

sp1/3(f) sp1/3′(f)/n ≤ rank1/3(F ) ≤ sp1/3(f)∣∣∣∣f̂ ∣∣∣∣
1

∣∣∣∣F̂ ∣∣∣∣
1

=
∣∣∣∣f̂ ∣∣∣∣

1

∣∣∣∣f̂ ∣∣∣∣
1,1/3

∣∣∣∣F̂ ∣∣∣∣
1,1/3

=
∣∣∣∣f̂ ∣∣∣∣

1,1/3

PDT (f) PDT (f)1/6 ≤ D(F ) ≤ 2PDT (f)

Why are we looking at
∣∣∣∣F̂ ∣∣∣∣

1
?



Lifting with XOR

Measure for f Measure for F = f ◦ XOR
sp(f) rank(F ) = sp(f)

sp1/3(f) sp1/3′(f)/n ≤ rank1/3(F ) ≤ sp1/3(f)∣∣∣∣f̂ ∣∣∣∣
1

∣∣∣∣F̂ ∣∣∣∣
1

=
∣∣∣∣f̂ ∣∣∣∣

1

∣∣∣∣f̂ ∣∣∣∣
1,1/3

∣∣∣∣F̂ ∣∣∣∣
1,1/3

=
∣∣∣∣f̂ ∣∣∣∣

1,1/3

PDT (f) PDT (f)1/6 ≤ D(F ) ≤ 2PDT (f)

Why are we looking at
∣∣∣∣F̂ ∣∣∣∣

1
?

Grolmusz [Grolmusz ‘97] conjectured: R(F ) ≤ logO(1)
∣∣∣∣F̂ ∣∣∣∣

1



Lifting with XOR

Measure for f Measure for F = f ◦ XOR
sp(f) rank(F ) = sp(f)

sp1/3(f) sp1/3′(f)/n ≤ rank1/3(F ) ≤ sp1/3(f)∣∣∣∣f̂ ∣∣∣∣
1

∣∣∣∣F̂ ∣∣∣∣
1

=
∣∣∣∣f̂ ∣∣∣∣

1∣∣∣∣f̂ ∣∣∣∣
1,1/3

∣∣∣∣F̂ ∣∣∣∣
1,1/3

=
∣∣∣∣f̂ ∣∣∣∣

1,1/3

PDT (f) PDT (f)1/6 ≤ D(F ) ≤ 2PDT (f)



Lifting with XOR

Measure for f Measure for F = f ◦ XOR
sp(f) rank(F ) = sp(f)

sp1/3(f) sp1/3′(f)/n ≤ rank1/3(F ) ≤ sp1/3(f)∣∣∣∣f̂ ∣∣∣∣
1

∣∣∣∣F̂ ∣∣∣∣
1

=
∣∣∣∣f̂ ∣∣∣∣

1∣∣∣∣f̂ ∣∣∣∣
1,1/3

∣∣∣∣F̂ ∣∣∣∣
1,1/3

=
∣∣∣∣f̂ ∣∣∣∣

1,1/3

PDT (f) PDT (f)1/6 ≤ D(F ) ≤ 2PDT (f)

If the LRC is true for XOR functions, then
PDT (f) ≤ logO(1) sp(f).



log sp1/3′(f), log
∣∣∣∣f̂ ∣∣∣∣

1,1/3
: Potayto, Potahto+log n

g(z) =
∑
S

ĝ(S)zS

I For any z, g(z) = E[gsample(z)].
I Since each term in the addition is bounded, we can use

Hoeffding’s Lemma.
I whp, if T = O

(∣∣∣∣ĝ∣∣∣∣2
1

)
, gsample approximates g on a fixed z.

I whp, if T = O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

, gsample approximates g on all z.

I Approximate sparsity of g is less than O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

.

I Approximate sparsity of g is less than O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

.

I If
∣∣∣∣f̂ ∣∣∣∣

1,1/3
≤ k, then sp1/3+ε(f) ≤ O(k2n/ε2).

I LARC for XOR functions is “equivalent” to the
corresponding `1-based conjecture for XOR functions.
Implies Grolmusz’ conjecture.



log sp1/3′(f), log
∣∣∣∣f̂ ∣∣∣∣

1,1/3
: Potayto, Potahto+log n

g(z) =
∑
S

ĝ(S)zS

gsample(z) =
∣∣∣∣ĝ∣∣∣∣

1
(sgn(ĝ(S1))zS1)

I For any z, g(z) = E[gsample(z)].

I Since each term in the addition is bounded, we can use
Hoeffding’s Lemma.

I whp, if T = O
(∣∣∣∣ĝ∣∣∣∣2

1

)
, gsample approximates g on a fixed z.

I whp, if T = O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

, gsample approximates g on all z.

I Approximate sparsity of g is less than O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

.

I Approximate sparsity of g is less than O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

.

I If
∣∣∣∣f̂ ∣∣∣∣

1,1/3
≤ k, then sp1/3+ε(f) ≤ O(k2n/ε2).

I LARC for XOR functions is “equivalent” to the
corresponding `1-based conjecture for XOR functions.
Implies Grolmusz’ conjecture.



log sp1/3′(f), log
∣∣∣∣f̂ ∣∣∣∣

1,1/3
: Potayto, Potahto+log n

g(z) =
∑
S

ĝ(S)zS

gsample(z) =
∣∣∣∣ĝ∣∣∣∣

1
(sgn(ĝ(S1))zS1)

I For any z, g(z) = E[gsample(z)].

E[gsample(z)] =
∑
S⊆[n]

|ĝ(S1)|∣∣∣∣ĝ∣∣∣∣
1

sgn(ĝ(S))zS =
∑
S

ĝ(S)zS = g(z)

I Since each term in the addition is bounded, we can use
Hoeffding’s Lemma.

I whp, if T = O
(∣∣∣∣ĝ∣∣∣∣2

1

)
, gsample approximates g on a fixed z.

I whp, if T = O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

, gsample approximates g on all z.

I Approximate sparsity of g is less than O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

.

I Approximate sparsity of g is less than O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

.

I If
∣∣∣∣f̂ ∣∣∣∣

1,1/3
≤ k, then sp1/3+ε(f) ≤ O(k2n/ε2).

I LARC for XOR functions is “equivalent” to the
corresponding `1-based conjecture for XOR functions.
Implies Grolmusz’ conjecture.



log sp1/3′(f), log
∣∣∣∣f̂ ∣∣∣∣

1,1/3
: Potayto, Potahto+log n

g(z) =
∑
S

ĝ(S)zS

gsample(z) =

∣∣∣∣ĝ∣∣∣∣
1

2
(sgn(ĝ(S1))zS1 + sgn(ĝ(S2))zS2)

I For any z, g(z) = E[gsample(z)].

I Since each term in the addition is bounded, we can use
Hoeffding’s Lemma.

I whp, if T = O
(∣∣∣∣ĝ∣∣∣∣2

1

)
, gsample approximates g on a fixed z.

I whp, if T = O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

, gsample approximates g on all z.

I Approximate sparsity of g is less than O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

.

I Approximate sparsity of g is less than O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

.

I If
∣∣∣∣f̂ ∣∣∣∣

1,1/3
≤ k, then sp1/3+ε(f) ≤ O(k2n/ε2).

I LARC for XOR functions is “equivalent” to the
corresponding `1-based conjecture for XOR functions.
Implies Grolmusz’ conjecture.



log sp1/3′(f), log
∣∣∣∣f̂ ∣∣∣∣

1,1/3
: Potayto, Potahto+log n

g(z) =
∑
S

ĝ(S)zS

gsample(z) =

∣∣∣∣ĝ∣∣∣∣
1

T
(sgn(ĝ(S1))zS1 + sgn(ĝ(S2))zS2 + · · · )

I For any z, g(z) = E[gsample(z)].

I Since each term in the addition is bounded, we can use
Hoeffding’s Lemma.

I whp, if T = O
(∣∣∣∣ĝ∣∣∣∣2

1

)
, gsample approximates g on a fixed z.

I whp, if T = O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

, gsample approximates g on all z.

I Approximate sparsity of g is less than O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

.

I Approximate sparsity of g is less than O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

.

I If
∣∣∣∣f̂ ∣∣∣∣

1,1/3
≤ k, then sp1/3+ε(f) ≤ O(k2n/ε2).

I LARC for XOR functions is “equivalent” to the
corresponding `1-based conjecture for XOR functions.
Implies Grolmusz’ conjecture.



log sp1/3′(f), log
∣∣∣∣f̂ ∣∣∣∣

1,1/3
: Potayto, Potahto+log n

g(z) =
∑
S

ĝ(S)zS

gsample(z) =

∣∣∣∣ĝ∣∣∣∣
1

T
(sgn(ĝ(S1))zS1 + sgn(ĝ(S2))zS2 + · · · )

I For any z, g(z) = E[gsample(z)].
I Since each term in the addition is bounded, we can use

Hoeffding’s Lemma.

I whp, if T = O
(∣∣∣∣ĝ∣∣∣∣2

1

)
, gsample approximates g on a fixed z.

I whp, if T = O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

, gsample approximates g on all z.

I Approximate sparsity of g is less than O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

.

I Approximate sparsity of g is less than O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

.

I If
∣∣∣∣f̂ ∣∣∣∣

1,1/3
≤ k, then sp1/3+ε(f) ≤ O(k2n/ε2).

I LARC for XOR functions is “equivalent” to the
corresponding `1-based conjecture for XOR functions.
Implies Grolmusz’ conjecture.



log sp1/3′(f), log
∣∣∣∣f̂ ∣∣∣∣

1,1/3
: Potayto, Potahto+log n

g(z) =
∑
S

ĝ(S)zS

gsample(z) =

∣∣∣∣ĝ∣∣∣∣
1

T
(sgn(ĝ(S1))zS1 + sgn(ĝ(S2))zS2 + · · · )

I For any z, g(z) = E[gsample(z)].
I Since each term in the addition is bounded, we can use

Hoeffding’s Lemma.
I whp, if T = O

(∣∣∣∣ĝ∣∣∣∣2
1

)
, gsample approximates g on a fixed z.

I whp, if T = O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

, gsample approximates g on all z.

I Approximate sparsity of g is less than O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

.

I Approximate sparsity of g is less than O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

.

I If
∣∣∣∣f̂ ∣∣∣∣

1,1/3
≤ k, then sp1/3+ε(f) ≤ O(k2n/ε2).

I LARC for XOR functions is “equivalent” to the
corresponding `1-based conjecture for XOR functions.
Implies Grolmusz’ conjecture.



log sp1/3′(f), log
∣∣∣∣f̂ ∣∣∣∣

1,1/3
: Potayto, Potahto+log n

g(z) =
∑
S

ĝ(S)zS

gsample(z) =

∣∣∣∣ĝ∣∣∣∣
1

T
(sgn(ĝ(S1))zS1 + sgn(ĝ(S2))zS2 + · · · )

I For any z, g(z) = E[gsample(z)].
I Since each term in the addition is bounded, we can use

Hoeffding’s Lemma.
I whp, if T = O

(∣∣∣∣ĝ∣∣∣∣2
1

)
, gsample approximates g on a fixed z.

I whp, if T = O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

, gsample approximates g on all z.

I Approximate sparsity of g is less than O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

.

I Approximate sparsity of g is less than O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

.

I If
∣∣∣∣f̂ ∣∣∣∣

1,1/3
≤ k, then sp1/3+ε(f) ≤ O(k2n/ε2).

I LARC for XOR functions is “equivalent” to the
corresponding `1-based conjecture for XOR functions.
Implies Grolmusz’ conjecture.



log sp1/3′(f), log
∣∣∣∣f̂ ∣∣∣∣

1,1/3
: Potayto, Potahto+log n

g(z) =
∑
S

ĝ(S)zS

gsample(z) =

∣∣∣∣ĝ∣∣∣∣
1

T
(sgn(ĝ(S1))zS1 + sgn(ĝ(S2))zS2 + · · · )

I For any z, g(z) = E[gsample(z)].
I Since each term in the addition is bounded, we can use

Hoeffding’s Lemma.
I whp, if T = O

(∣∣∣∣ĝ∣∣∣∣2
1

)
, gsample approximates g on a fixed z.

I whp, if T = O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

, gsample approximates g on all z.

I Approximate sparsity of g is less than O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

.

I Approximate sparsity of g is less than O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

.

I If
∣∣∣∣f̂ ∣∣∣∣

1,1/3
≤ k, then sp1/3+ε(f) ≤ O(k2n/ε2).

I LARC for XOR functions is “equivalent” to the
corresponding `1-based conjecture for XOR functions.
Implies Grolmusz’ conjecture.



log sp1/3′(f), log
∣∣∣∣f̂ ∣∣∣∣

1,1/3
: Potayto, Potahto+log n

g(z) =
∑
S

ĝ(S)zS

gsample(z) =

∣∣∣∣ĝ∣∣∣∣
1

T
(sgn(ĝ(S1))zS1 + sgn(ĝ(S2))zS2 + · · · )

I Approximate sparsity of g is less than O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

.

I If
∣∣∣∣f̂ ∣∣∣∣

1,1/3
≤ k, then sp1/3+ε(f) ≤ O(k2n/ε2).

I LARC for XOR functions is “equivalent” to the
corresponding `1-based conjecture for XOR functions.
Implies Grolmusz’ conjecture.



log sp1/3′(f), log
∣∣∣∣f̂ ∣∣∣∣

1,1/3
: Potayto, Potahto+log n

g(z) =
∑
S

ĝ(S)zS

gsample(z) =

∣∣∣∣ĝ∣∣∣∣
1

T
(sgn(ĝ(S1))zS1 + sgn(ĝ(S2))zS2 + · · · )

I Approximate sparsity of g is less than O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

.

I If
∣∣∣∣f̂ ∣∣∣∣

1,1/3
≤ k, then sp1/3+ε(f) ≤ O(k2n/ε2).

I LARC for XOR functions is “equivalent” to the
corresponding `1-based conjecture for XOR functions.
Implies Grolmusz’ conjecture.



log sp1/3′(f), log
∣∣∣∣f̂ ∣∣∣∣

1,1/3
: Potayto, Potahto+log n

g(z) =
∑
S

ĝ(S)zS

gsample(z) =

∣∣∣∣ĝ∣∣∣∣
1

T
(sgn(ĝ(S1))zS1 + sgn(ĝ(S2))zS2 + · · · )

I Approximate sparsity of g is less than O
(∣∣∣∣ĝ∣∣∣∣2

1
n
)

.

I If
∣∣∣∣f̂ ∣∣∣∣

1,1/3
≤ k, then sp1/3+ε(f) ≤ O(k2n/ε2).

I LARC for XOR functions is “equivalent” to the
corresponding `1-based conjecture for XOR functions.
Implies Grolmusz’ conjecture.



Take a Breather

Log-Approximate-
Rank Conjec-

ture [LS09]

Log-Rank Con-
jecture [LS88] Strong Log-

Approximate-
Nonnegative-Rank

Conjecture [KMSY14]Log-Rank-Conjecture
for XOR Functions

Log-Approximate-
Nonnegative-Rank

Conjecture [KMSY14]



Take a Breather

Log-Approximate-
Rank Conjec-

ture [LS09]

Grolmusz’s Con-
jecture [Gro97]

Log-Rank Con-
jecture [LS88] Strong Log-

Approximate-
Nonnegative-Rank

Conjecture [KMSY14]Log-Rank-Conjecture
for XOR Functions

Log-Approximate-
Nonnegative-Rank

Conjecture [KMSY14]



Take a Breather

Log-Approximate-
Rank Conjec-

ture [LS09]

Grolmusz’s Con-
jecture [Gro97]

Log-Rank Con-
jecture [LS88] Strong Log-

Approximate-
Nonnegative-Rank

Conjecture [KMSY14]Log-Rank-Conjecture
for XOR Functions

Log-Approximate-
Nonnegative-Rank

Conjecture [KMSY14]



Take a Breather

Log-Approximate-
Rank Conjec-

ture [LS09]

Grolmusz’s Con-
jecture [Gro97]

Log-Rank Con-
jecture [LS88] Strong Log-

Approximate-
Nonnegative-Rank

Conjecture [KMSY14]Log-Rank-Conjecture
for XOR Functions

Log-Approximate-
Nonnegative-Rank

Conjecture [KMSY14]



Take a Breather

Log-Approximate-
Rank Conjec-

ture [LS09]

Grolmusz’s Con-
jecture [Gro97]

Log-Rank Con-
jecture [LS88] Strong Log-

Approximate-
Nonnegative-Rank

Conjecture [KMSY14]Log-Rank-Conjecture
for XOR Functions

Log-Approximate-
Nonnegative-Rank

Conjecture [KMSY14]

Parity Kill Number
Conjecture [TWXZ13]



Take a Breather

R(F ) vs.
log rank1/3(F )

R(F ) vs.
log
∣∣∣∣F̂ ∣∣∣∣

1

D(F ) vs.
log rank(F )

R(F ) vs.
log rank+

1/3(F )

PDT(f) vs.
log sp(f)

R(F ) vs.
log
(
rank+

1/3(F ) + rank+
1/3(F )

)C⊕min(f) vs.
log
∣∣∣∣f̂ ∣∣∣∣

1



Is RPDT (f) ≤ log
∣∣∣∣f̂ ∣∣∣∣

1
?

Functions with small Fourier `1 norm:
I ANDs/affine subspaces.

I Similar to the case of leaves in a protocol: sum of few
disjoint ANDs.

z1 z2 z3

S1 0 0 ∗
S2 1 ∗ 0
S3 ∗ 1 1



Is RPDT (f) ≤ log
∣∣∣∣f̂ ∣∣∣∣

1
?

Functions with small Fourier `1 norm:
I ANDs/affine subspaces.
I Similar to the case of leaves in a protocol: sum of few

disjoint ANDs.

z1 z2 z3

S1 0 0 ∗
S2 1 ∗ 0
S3 ∗ 1 1



Is RPDT (f) ≤ log
∣∣∣∣f̂ ∣∣∣∣

1
?

Functions with small Fourier `1 norm:
I ANDs/affine subspaces.
I Similar to the case of leaves in a protocol: sum of few

disjoint ANDs.

z1 z2 z3

S1 0 0 ∗
S2 1 ∗ 0
S3 ∗ 1 1



Larger example

z1,2 z1,3 · · · zm−2,m zm−1,m

S1 0 0 · · · ∗ ∗
S2 1 ∗ · · · ∗ ∗
· · · · · · · · · · · · · · ·
Sm−1 ∗ ∗ · · · ∗ 0
Sm ∗ ∗ · · · 1 1



Rephrased

SINK : {0, 1}(
m
2 ) → {0, 1}

v1

v2

v3

v4

v5

z1,2

z1,3

z1,4

z1,5

z2,3

z2,4

z2,5

z3,4

z3,5

z4,5

0

0

1

0

0

1

1

1

1

1

Alice

x ∈ {0, 1}(
m
2 )

Bob

y ∈ {0, 1}(
m
2 )

z = x⊕ y

SINK(z) = 1 iff there is a
sink in the graph Gz.
I
∣∣∣∣ŜINK∣∣∣∣

1
≤ m.

I sp1/3(SINK) ≤ m4.

I
∣∣∣∣F̂ ∣∣∣∣

1
≤ m.

I rank1/3(F ) ≤ m4.
Viewing it as a sum of
equalities,
rank+

1/3(F ) ≤ mO(1).



Rephrased

SINK : {0, 1}(
m
2 ) → {0, 1}

v1

v2

v3

v4

v5

z1,2

z1,3

z1,4

z1,5

z2,3

z2,4

z2,5

z3,4

z3,5

z4,5

0

0

1

0

0

1

1

1

1

1

Alice

x ∈ {0, 1}(
m
2 )

Bob

y ∈ {0, 1}(
m
2 )

z = x⊕ y

SINK(z) = 1 iff there is a
sink in the graph Gz.
I
∣∣∣∣ŜINK∣∣∣∣

1
≤ m.

I sp1/3(SINK) ≤ m4.

I
∣∣∣∣F̂ ∣∣∣∣

1
≤ m.

I rank1/3(F ) ≤ m4.
Viewing it as a sum of
equalities,
rank+

1/3(F ) ≤ mO(1).



Rephrased

SINK : {0, 1}(
m
2 ) → {0, 1}

v1

v2

v3

v4

v5

z1,2

z1,3

z1,4

z1,5

z2,3

z2,4

z2,5

z3,4

z3,5

z4,5

0

0

1

0

0

1

1

1

1

1

Alice

x ∈ {0, 1}(
m
2 )

Bob

y ∈ {0, 1}(
m
2 )

z = x⊕ y

SINK(z) = 1 iff there is a
sink in the graph Gz.
I
∣∣∣∣ŜINK∣∣∣∣

1
≤ m.

I sp1/3(SINK) ≤ m4.

I
∣∣∣∣F̂ ∣∣∣∣

1
≤ m.

I rank1/3(F ) ≤ m4.
Viewing it as a sum of
equalities,
rank+

1/3(F ) ≤ mO(1).



Rephrased

SINK : {0, 1}(
m
2 ) → {0, 1}

v1

v2

v3

v4

v5

z1,2

z1,3

z1,4

z1,5

z2,3

z2,4

z2,5

z3,4

z3,5

z4,5

0

0

1

0

0

1

1

1

1

1

Alice

x ∈ {0, 1}(
m
2 )

Bob

y ∈ {0, 1}(
m
2 )

z = x⊕ y

SINK(z) = 1 iff there is a
sink in the graph Gz.
I
∣∣∣∣ŜINK∣∣∣∣

1
≤ m.

I sp1/3(SINK) ≤ m4.

I
∣∣∣∣F̂ ∣∣∣∣

1
≤ m.

I rank1/3(F ) ≤ m4.
Viewing it as a sum of
equalities,
rank+

1/3(F ) ≤ mO(1).



Rephrased

SINK : {0, 1}(
m
2 ) → {0, 1}

v1

v2

v3

v4

v5

z1,2

z1,3

z1,4

z1,5

z2,3

z2,4

z2,5

z3,4

z3,5

z4,5

0

0

1

0

0

1

1

1

1

1

Alice

x ∈ {0, 1}(
m
2 )

Bob

y ∈ {0, 1}(
m
2 )

z = x⊕ y

SINK(z) = 1 iff there is a
sink in the graph Gz.

I
∣∣∣∣ŜINK∣∣∣∣

1
≤ m.

I sp1/3(SINK) ≤ m4.

I
∣∣∣∣F̂ ∣∣∣∣

1
≤ m.

I rank1/3(F ) ≤ m4.
Viewing it as a sum of
equalities,
rank+

1/3(F ) ≤ mO(1).



Rephrased

v1

v2

v3

v4

v5

z1,2

z1,3

z1,4

z1,5

z2,3

z2,4

z2,5

z3,4

z3,5

z4,5

0

0

1

0

0

1

1

1

1

1

Alice

x ∈ {0, 1}(
m
2 )

Bob

y ∈ {0, 1}(
m
2 )

z = x⊕ y

SINK(z) = 1 iff there is a
sink in the graph Gz.
I
∣∣∣∣ŜINK∣∣∣∣

1
≤ m.

I sp1/3(SINK) ≤ m4.

I
∣∣∣∣F̂ ∣∣∣∣

1
≤ m.

I rank1/3(F ) ≤ m4.
Viewing it as a sum of
equalities,
rank+

1/3(F ) ≤ mO(1).



Rephrased

F := SINK ◦ XOR : {0, 1}(
m
2 ) × {0, 1}(

m
2 ) → {0, 1}

v1

v2

v3

v4

v5

z1,2

z1,3

z1,4

z1,5

z2,3

z2,4

z2,5

z3,4

z3,5

z4,5

0

0

1

0

0

1

1

1

1

1

Alice

x ∈ {0, 1}(
m
2 )

Bob

y ∈ {0, 1}(
m
2 )

z = x⊕ y

SINK(z) = 1 iff there is a
sink in the graph Gz.
I
∣∣∣∣ŜINK∣∣∣∣

1
≤ m.

I sp1/3(SINK) ≤ m4.

I
∣∣∣∣F̂ ∣∣∣∣

1
≤ m.

I rank1/3(F ) ≤ m4.

Viewing it as a sum of
equalities,
rank+

1/3(F ) ≤ mO(1).



Rephrased

F := SINK ◦ XOR : {0, 1}(
m
2 ) × {0, 1}(

m
2 ) → {0, 1}

v1

v2

v3

v4

v5

z1,2

z1,3

z1,4

z1,5

z2,3

z2,4

z2,5

z3,4

z3,5

z4,5

0

0

1

0

0

1

1

1

1

1

Alice

x ∈ {0, 1}(
m
2 )

Bob

y ∈ {0, 1}(
m
2 )

z = x⊕ y

SINK(z) = 1 iff there is a
sink in the graph Gz.
I
∣∣∣∣ŜINK∣∣∣∣

1
≤ m.

I sp1/3(SINK) ≤ m4.

I
∣∣∣∣F̂ ∣∣∣∣

1
≤ m.

I rank1/3(F ) ≤ m4.
Viewing it as a sum of
equalities,
rank+

1/3(F ) ≤ mO(1).



SINK is not easy

Theorem (Chattopadhyay Mande S ’19)
RPDT (SINK) ≥ Ω(m), R(SINK ◦ XOR) ≥ Ω(m)

and SINK has
parity kill number ≥ Ω(m).



SINK is not easy

Theorem (Chattopadhyay Mande S ’19)
RPDT (SINK) ≥ Ω(m), R(SINK ◦ XOR) ≥ Ω(m) and SINK has
parity kill number ≥ Ω(m).



Sunken Conjectures

Log-Approximate-
Rank Conjec-

ture [LS09]

Grolmusz’s Con-
jecture [Gro97]

Log-Rank Con-
jecture [LS88] Strong Log-

Approximate-
Nonnegative-Rank

Conjecture [KMSY14]Log-Rank-Conjecture
for XOR Functions

Log-Approximate-
Nonnegative-Rank

Conjecture [KMSY14]

Parity Kill Number
Conjecture [TWXZ13]



Sunken Conjectures

R(F ) vs.
log rank1/3(F )

R(F ) vs.
log
∣∣∣∣F̂ ∣∣∣∣

1

D(F ) vs.
log rank(F )

R(F ) vs.
log rank+

1/3(F )

PDT(f) vs.
log sp(f)

R(F ) vs.
log
(
rank+

1/3(F ) + rank+
1/3(F )

)C⊕min(f) vs.
log
∣∣∣∣f̂ ∣∣∣∣

1



Sunken Conjectures

R(F ) vs.
log rank1/3(F )

R(F ) vs.
log
∣∣∣∣F̂ ∣∣∣∣

1

D(F ) vs.
log rank(F )

R(F ) vs.
log rank+

1/3(F )

PDT(f) vs.
log sp(f)

R(F ) vs.
log
(
rank+

1/3(F ) + rank+
1/3(F )

)C⊕min(f) vs.
log
∣∣∣∣f̂ ∣∣∣∣

1

rank+
ε (SINK ◦ XOR) ≥ 2Ω(m)



Sunken Conjectures

R(F ) vs.
log rank1/3(F )

R(F ) vs.
log
∣∣∣∣F̂ ∣∣∣∣

1

D(F ) vs.
log rank(F )

R(F ) vs.
log rank+

1/3(F )

PDT(f) vs.
log sp(f)

R(F ) vs.
log
(
rank+

1/3(F ) + rank+
1/3(F )

)

Q(F ) vs.
log rank1/3(F )

C⊕min(f) vs.
log
∣∣∣∣f̂ ∣∣∣∣

1

rank+
ε (SINK ◦ XOR) ≥ 2Ω(m)



Sunken Conjectures

R(F ) vs.
log rank1/3(F )

R(F ) vs.
log
∣∣∣∣F̂ ∣∣∣∣

1

D(F ) vs.
log rank(F )

R(F ) vs.
log rank+

1/3(F )

PDT(f) vs.
log sp(f)

R(F ) vs.
log
(
rank+

1/3(F ) + rank+
1/3(F )

)C⊕min(f) vs.
log
∣∣∣∣f̂ ∣∣∣∣

1

rank+
ε (SINK ◦ XOR) ≥ 2Ω(m)

Q(F ) vs.
log rank1/3(F )

[Anshu Boddu Touchette ’18, Sinha & de Wolf ’18]



About the Log-Approximate-Nonnegative-Rank
Conjecture

I Can we have a function f wherein f−1(1) is a disjoint union
of subcubes AND f−1(0) is a disjoint union of subcubes
BUT f has large RPDT complexity?

No. Elegant proof follows from [Ehrenfeucht and Haussler
‘89].

I The proof does not extend to disjoint unions of affine
subspaces. Would be very interesting to settle this
possibility.



About the Log-Approximate-Nonnegative-Rank
Conjecture

I Can we have a function f wherein f−1(1) is a disjoint union
of subcubes AND f−1(0) is a disjoint union of subcubes
BUT f has large RPDT complexity?
No. Elegant proof follows from [Ehrenfeucht and Haussler
‘89].

I The proof does not extend to disjoint unions of affine
subspaces. Would be very interesting to settle this
possibility.



About the Log-Approximate-Nonnegative-Rank
Conjecture

I Can we have a function f wherein f−1(1) is a disjoint union
of subcubes AND f−1(0) is a disjoint union of subcubes
BUT f has large RPDT complexity?
No. Elegant proof follows from [Ehrenfeucht and Haussler
‘89].

I The proof does not extend to disjoint unions of affine
subspaces. Would be very interesting to settle this
possibility.



Summary

I XOR functions behave well.
I PDTs are not well understood.
I Lots of juicy questions:

I Are Randomized PDTs basically ∧PDTs?
I Can we close the avenue mentioned towards disproving the

Log-Approximate-Nonnegative-Rank Conjecture?
I Can we better the closeness between randomized

complexity and approximate-rank? (SINK is quartically
close.)

I Can we attack the Log-Rank Conjecture? (The summation
trick that SINK uses does not work.)

I And more...

Thank you all for attending. I am open to questions and
discussions.



Summary

I XOR functions behave well.
I PDTs are not well understood.
I Lots of juicy questions:

I Are Randomized PDTs basically ∧PDTs?
I Can we close the avenue mentioned towards disproving the

Log-Approximate-Nonnegative-Rank Conjecture?
I Can we better the closeness between randomized

complexity and approximate-rank? (SINK is quartically
close.)

I Can we attack the Log-Rank Conjecture? (The summation
trick that SINK uses does not work.)

I And more...

Thank you all for attending. I am open to questions and
discussions.



Vince Grolmusz.
On the power of circuits with gates of low L1 norms.
Theor. Comput. Sci., 188(1-2):117–128, 1997.

Gillat Kol, Shay Moran, Amir Shpilka, and Amir Yehudayoff.
Approximate nonnegative rank is equivalent to the smooth
rectangle bound.
In Automata, Languages, and Programming - 41st
International Colloquium, ICALP 2014, Copenhagen,
Denmark, July 8-11, 2014, Proceedings, Part I, pages
701–712, 2014.

László Lovász and Michael E. Saks.
Lattices, möbius functions and communication complexity.
In 29th Annual Symposium on Foundations of Computer
Science, White Plains, New York, USA, 24-26 October
1988, pages 81–90, 1988.

Troy Lee and Adi Shraibman.
Lower bounds in communication complexity.



Foundations and Trends in Theoretical Computer Science,
3(4):263–398, 2009.

Hing Yin Tsang, Chung Hoi Wong, Ning Xie, and Shengyu
Zhang.
Fourier sparsity, spectral norm, and the log-rank conjecture.

In 54th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2013, 26-29 October, 2013,
Berkeley, CA, USA, pages 658–667, 2013.


