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Communication Complexity for Communication
Complexity’s Sake

I This talk is aimed at a better understanding of
communication complexity.

I In this talk, we focus on two parties (Alice and Bob)
computing a total Boolean function.

I XOR functions feature in this talk because
I They are structured enough to reason about.
I There is enough mystery about them for them to be

interesting.
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A Communication Protocol
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×
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Rank
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Y

Building the truth table for the function computed by the
protocol.
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Inputs that reach any 1 leaf form a rank ≤ 2c matrix.
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Cost c protocol for F
=⇒

MF has rank ≤ 2c.



Protocol-Rank Equivalence?

Conjecture (Lovász Saks ‘88)

∃ constant α s.t. D(F ) ≤ logα rank(F )

I Connects comm comp measure with algebraic measure.
Known analogous connections have been useful.

I Has connections to graph colouring, low degree
polynomials.

For: [Lovett ‘13] showed that D(F ) . O
(√

rank(F )
)

.

Against: [Göös Pitassi Watson ‘15] showed that α ≥ 2.

Fun fact: LRC is True if you restrict the rank decomposition to
be nonnegative.
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Against: [Göös Pitassi Watson ‘15] showed that α ≥ 2.

Fun fact: LRC is True if you restrict the rank decomposition to
be nonnegative.



Protocol-Rank Equivalence?

Conjecture (Lovász Saks ‘88)

∃ constant α s.t. D(F ) ≤ logα rank(F )

I Connects comm comp measure with algebraic measure.
Known analogous connections have been useful.

I Has connections to graph colouring, low degree
polynomials.

For: [Lovett ‘13] showed that D(F ) . O
(√

rank(F )
)

.
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=
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×
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Figure: Screenshot from “Communication complexity - Wikipedia” (Dec ‘05)
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Conjecture (ForgeGod ’05, Lee Shraibman ’07)

∃ constant β s.t. R(F ) ≤ logβ rank1/3(F )

Implies the LRC! [Gavinsky Lovett ‘13]

Set Disjointness shows that β ≥ 2. [Kalyanasundaram
Schnitger ‘92, Razborov ‘92]

[Göös Jayram Pitassi Watson ‘17] showed that β ≥ 4.
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Nonnegative Ranks

I It is known that D(F ) ≤ O(log2(rank+(F ))). [Lovász ‘90]

I One may conjecture that R(F ) ≤ logO(1)(rank+
1/3(F )).

I Or the more reasonable conjecture that

R(F ) ≤ logO(1)(max
{
rank+

1/3(F ), rank+
1/3(F ))

}
).

I [Kol Moran Shpilka Yehudayoff ‘14] did.
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XOR Compositions

Encodes an n-bit string into 2 n-bit strings, none of which give
any information about the original.
I XOR is good for this purpose. [U.S. Patent 1,310,719,

Gilbert Vernam ‘19]
I Patent expired in 1936, so we can feel free to compose

with XOR.
f ◦ XOR(x, y) = f(z) where z = x⊕ y.

I Neither Alice nor Bob have any idea about any bit of z.
I But, parity can be computed easily.
I Expect to lift from Parity Decision Trees (allowed queries

are parities, not just bits).
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Parity Decision Trees (PDTs)
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{z : z satisfies red constraints}
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OR: Hard for deterministic PDTs

I You have to reject just one input.
I Any leaf at depth d has 2−d fraction of inputs.
I =⇒ there must be a 0-leaf at depth n.



OR: Easy for randomized PDTs

I Randomly sample S ⊆U [n].
I Query ⊕Sz.

Pr[Query outputs 0] =

{
1 if z = 0n

1/2 if z 6= 0n



Deterministic vs Randomized

OR ◦ XOR is the canonical separation of deterministic and
randomized communication complexity.

I There are no such examples known with other small
gadgets.

I For gadgets that lift query complexity, it is impossible.
What other potentially fruitful properties do PDTs have?
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When else is randomness powerful?

I RPDTs can compute affine subspaces the same way it
does AND.

Given a node in a PDT, an RPDT can tell whether the input
will reach it.

I Hence RPDTs can balance PDTs. So
RPDT (f) ≤ logPDT leaf (f).

I Open Problem: Is there anything else that RPDTs can do?
I Lifted Open Problem: Is there an XOR function easy for

randomized communication but hard for PEQ protocols?
For general functions, this question was answered very
recently. [Chattopadhyay Lovett Vinyals ‘19] exhibited a
function with the separation.
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Meet the PDT measures: Fourier Analysis

AND : {±1}n → {0, 1}

AND(z1, z2, z3) =
1

8
− 1

8
z1 −
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8
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1

8
z3 +
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8
z1z2 +
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8
z1z3 +
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8
z2z3 −

1

8
z1z2z3

Sparsity: sp(f) is the number of non-zero coefficients.
`1:
∣∣∣∣f̂ ∣∣∣∣

1
is the sum of the absolute values of the coefficients.

I Every leaf is an affine subspace in F2.
I For a function f computable by a depth-k PDT, sp(f) ≤ 22k

and
∣∣∣∣f̂ ∣∣∣∣

1
≤ 2k.

I For a function f computable by a depth-k RPDT,∣∣∣∣f̂ ∣∣∣∣
1,1/3

≤ 2k.
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ĝ(S)zS

gsample(z) =

∣∣∣∣ĝ∣∣∣∣
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(∣∣∣∣ĝ∣∣∣∣2

1
n
)

.

I If
∣∣∣∣f̂ ∣∣∣∣

1,1/3
≤ k, then sp1/3+ε(f) ≤ O(k2n/ε2).

I LARC for XOR functions is “equivalent” to the
corresponding `1-based conjecture for XOR functions.
Implies Grolmusz’ conjecture.



log sp1/3′(f), log
∣∣∣∣f̂ ∣∣∣∣

1,1/3
: Potayto, Potahto+log n

g(z) =
∑
S
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(∣∣∣∣ĝ∣∣∣∣2

1
n
)

.

I If
∣∣∣∣f̂ ∣∣∣∣

1,1/3
≤ k, then sp1/3+ε(f) ≤ O(k2n/ε2).

I LARC for XOR functions is “equivalent” to the
corresponding `1-based conjecture for XOR functions.
Implies Grolmusz’ conjecture.



log sp1/3′(f), log
∣∣∣∣f̂ ∣∣∣∣

1,1/3
: Potayto, Potahto+log n

g(z) =
∑
S
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I Approximate sparsity of g is less than O
(∣∣∣∣ĝ∣∣∣∣2
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Functions with small Fourier `1 norm:
I ANDs/affine subspaces.

I Similar to the case of leaves in a protocol: sum of few
disjoint ANDs.

z1 z2 z3

S1 0 0 ∗
S2 1 ∗ 0
S3 ∗ 1 1
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Larger example

z1,2 z1,3 · · · zm−2,m zm−1,m

S1 0 0 · · · ∗ ∗
S2 1 ∗ · · · ∗ ∗
· · · · · · · · · · · · · · ·
Sm−1 ∗ ∗ · · · ∗ 0
Sm ∗ ∗ · · · 1 1



Rephrased

SINK : {0, 1}(
m
2 ) → {0, 1}
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1

1

1

1

Alice

x ∈ {0, 1}(
m
2 )

Bob

y ∈ {0, 1}(
m
2 )

z = x⊕ y

SINK(z) = 1 iff there is a
sink in the graph Gz.
I
∣∣∣∣ŜINK∣∣∣∣

1
≤ m.

I sp1/3(SINK) ≤ m4.

I
∣∣∣∣F̂ ∣∣∣∣

1
≤ m.

I rank1/3(F ) ≤ m4.
Viewing it as a sum of
equalities,
rank+

1/3(F ) ≤ mO(1).
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SINK is not easy
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RPDT (SINK) ≥ Ω(m), R(SINK ◦ XOR) ≥ Ω(m)

and SINK has
parity kill number ≥ Ω(m).
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[Anshu Boddu Touchette ’18, Sinha & de Wolf ’18]



About the Log-Approximate-Nonnegative-Rank
Conjecture

I Can we have a function f wherein f−1(1) is a disjoint union
of subcubes AND f−1(0) is a disjoint union of subcubes
BUT f has large RPDT complexity?

No. Elegant proof follows from [Ehrenfeucht and Haussler
‘89].

I The proof does not extend to disjoint unions of affine
subspaces. Would be very interesting to settle this
possibility.
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Summary

I XOR functions behave well.
I PDTs are not well understood.
I Lots of juicy questions:

I Are Randomized PDTs basically ∧PDTs?
I Can we close the avenue mentioned towards disproving the

Log-Approximate-Nonnegative-Rank Conjecture?
I Can we better the closeness between randomized

complexity and approximate-rank? (SINK is quartically
close.)

I Can we attack the Log-Rank Conjecture? (The summation
trick that SINK uses does not work.)

I And more...

Thank you all for attending. I am open to questions and
discussions.
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